Skip to main content
Log in

Effects of carboxyl-group counter-ions on biodegradation behaviors of TEMPO-oxidized cellulose fibers and nanofibril films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The biodegradation behaviors of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose fibers (TOCs) and TEMPO-oxidized cellulose nanofibril (TOCN) films containing various carboxyl-group counter-ions were studied. Na+, H+, Ca2+, NH4 +, Cu2+, K+, and Cs+ were introduced into the TOCs or TOCN films, by ion-exchange treatment, as the carboxyl-group counter-ions. TOCs suspended in distilled water were treated with a commercial crude cellulase, and the TOCN films were subjected to soil burial tests. The crude-cellulase-treated products obtained from the TOCs were separated into water/ethanol-insoluble and -soluble fractions, i.e., high- and low-molecular-weight fractions, respectively. The degradation behaviors of the TOCs were evaluated from the weight recovery ratios of the water/ethanol-insoluble fractions and their viscosity-average degrees of polymerization. The results showed that the degradation behaviors of the TOCs were greatly influenced by the counter ion, and the counter-ion order of degradability was Na+ ≈ NH4 + ≈ K+ ≈ Cs+ ≫ Ca2+ > H+ > Cu2+. These degradability differences were influenced by the swelling behavior of the corresponding TOCs in distilled water; the higher the swelling degree of the TOC, the higher the degradation efficiency of the TOC in the reaction with crude cellulase. Similar biodegradation behaviors were observed in soil burial tests for TOCN films containing various carboxyl-group counter-ions in soil burial test; again the counter ion greatly influenced the resultant biodegradability. The biodegradation behaviors of TOCs and TOCN films can therefore be controlled by selecting an appropriate carboxyl-group counter-ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Buchert J, Tamminen T, Viikari L (1997) Impact of the Donnan effect on the action of xylanases on fibre substrates. J Biotechnol 57:217–222

    Article  CAS  Google Scholar 

  • Delattre C, Michaud P, Elboutachfaiti R, Courtois B, Courtois J (2006) Production of oligocellouronates by biodegradation of oxidized cellulose. Cellulose 13:63–71

    Article  CAS  Google Scholar 

  • Elboutachfaiti R, Delattre C, Petit E, Michaud P (2011) Polyglucuronic acids: structures, functions and degrading enzymes. Carbohydr Polym 84:1–13

    Article  CAS  Google Scholar 

  • Evans R, Wallis AFA (1989) Cellulose molecular weights determined by viscometry. J Appl Polym Sci 37:2331–2340

    Article  CAS  Google Scholar 

  • Fujisawa S, Isogai T, Isogai A (2010) Temperature and pH stability of cellouronic acid. Cellulose 17:607–615

    Article  CAS  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Super reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188–2194

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062

    Article  CAS  Google Scholar 

  • Fukuzumi H, Fujisawa S, Saito T, Isogai A (2013) Selective permeation of hydrogen gas using cellulose nanofibrils film. Biomacromolecules 14:1705–1709

    Article  CAS  Google Scholar 

  • Geiger G, Brandl H, Furrer G, Schulin R (1998) The effect of copper on the activity of cellulase and β-glucosidase in the presence of montmorillonite or Al-montmorillonite. Soil Biol Biochem 30(12):1537–1544

    Article  CAS  Google Scholar 

  • Grignon J, Scallan AM (1980) Effect of pH and neutral salts upon the swelling of cellulose gels. J Appl Polym Sci 25:2829–2843

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps, effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Google Scholar 

  • Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672

    Article  CAS  Google Scholar 

  • Homma I, Isogai T, Saito T, Isogai A (2013) Degradation of TEMPO-oxidized cellulose fibers and nanofibrils by crude cellulase. Cellulose 20:795–805

    Article  CAS  Google Scholar 

  • Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–485

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Kato Y, Habu N, Yamaguchi J, Kobayashi Y, Shibata I, Isogai A, Samejima M (2002) Biodegradation of β-1,4-linked polyglucuronic acid (cellouronic acid). Cellulose 9:75–81

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Konno N, Habu N, Maeda I, Azuma N, Isogai A (2006) Cellouronate (β-1,4-linked polyglucuronate) lyase from Brevundimonas sp. SH203: purification and characterization. Carbohydr Polym 64:589–596

    Article  CAS  Google Scholar 

  • Konno N, Habu N, Iihashi N, Isogai A (2008) Purification and characterization of exo-type cellouronate lyase. Cellulose 15:453–463

    Article  CAS  Google Scholar 

  • Konno N, Ishida T, Igarashi K, Fushinobu S, Habu N, Samejima M, Isogai A (2009) Crystal structure of polysaccharide lyase family 20 endo-b-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. FEBS Lett 583:1323–1326

    Article  CAS  Google Scholar 

  • Liu P, Peng J, Li J, Wu J (2005) Radiation crosslinking of CMC-Na at low doses and its application as substitute for hydrogel. Radiat Phys Chem 72:635–638

    Article  CAS  Google Scholar 

  • Nemoto J, Soyama T, Saito T, Isogai A (2012) Nanoporous networks prepared by simple air drying of aqueous TEMPO-oxidized cellulose nanofibril dispersions. Biomacromolecules 13:943–946

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  • Qi ZD, Saito T, Fan Y, Isogai A (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13:553–558

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253

    Article  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  Google Scholar 

  • Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    Article  CAS  Google Scholar 

  • Sharples A (1971) Chapter XVIII, A. Acid hydrolysis and alcoholysis. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives part V. Wiley, USA, pp 991–1006

    Google Scholar 

  • Shimizu M, Fukuzumi H, Saito T, Isogai A (2013) Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Submitted to Int J Biol Macromol 59:99–104

    Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Sridewi N, Bhubalan K, Sudesh K (2006) Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab 91:2931–2940

    Article  CAS  Google Scholar 

  • Tavernier ML, Delattre C, Petit E, Michaud P (2008) Beta-(1,4)-polyglucuronic acids an overview. Open Biotechnol J 2:73–86

    Google Scholar 

  • Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932

    Article  CAS  Google Scholar 

  • Yachi T, Hayashi J, Takai M, Shimizu YJ (1983) Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. Appl Polym Sci Appl Polym Symp 37:325–343

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Japan Society for the Promotion of Science (JSPS): Grant-in-Aid for Scientific Research S (21228007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homma, I., Fukuzumi, H., Saito, T. et al. Effects of carboxyl-group counter-ions on biodegradation behaviors of TEMPO-oxidized cellulose fibers and nanofibril films. Cellulose 20, 2505–2515 (2013). https://doi.org/10.1007/s10570-013-0020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0020-6

Keywords

Navigation