Skip to main content
Log in

TEMPO-oxidized cellulose nanofiber films: effect of surface morphology on water resistance

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibers were prepared from two kraft pulps (Norway spruce and mixed eucalyptus) using the TEMPO/NaBr/NaClO system at pH 10 and 22 °C. After reaction and mechanical treatment, the TEMPO-oxidized celluloses were used for preparation of self-standing films and coatings of laminate films on 50-μm-thick polyethylene terephthalate films. Characterization of the films was performed based on water contact angle measurements, laser profilometry, scanning electron microscopy, and field-emission scanning electron microscopy. The purpose of this study is to understand how the measured contact angles are affected by the film’s physical properties (morphology, thickness, density, and roughness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bee T, Cross E, Dias A, Lee K-W, Shoichet M, McCarthy T (1992) Control of wettability of polymers using organic surface chemistry. J Adhes Sci Technol 6:719–731

    Article  CAS  Google Scholar 

  • Bragd P, van Bekkum H, Besemer A (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66

    Article  CAS  Google Scholar 

  • Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Chinga G, Johnssen P, Dougherty R, Lunden-Berli E, Walter J (2007) Quantification of the 3-D micro-structure of SC surfaces. J Microsc Oxford 27(3):254–265

    Article  Google Scholar 

  • Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12:841–851

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Yu Y, Diserud O (2011) Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiate kraft pulp fibers. Microsc Microanal 11:1–9

    Google Scholar 

  • Ek M (2009) Paper chemistry and technology, vol 3. de Gruyter, Berlin

  • Erbil H (2006) Surface chemistry of solid and liquid interfaces. Blackwell, Oxford

    Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund L, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Karabulut E, Wågberg L (2011) Design and characterization of cellulose nanofibril-based freestanding films prepared by layer-by-layer deposition technique. Soft Matter 7:3467–3474

    Article  CAS  Google Scholar 

  • Minelli M, Baschetti M, Doghieri F, Ankerfors M, Lindström T, Sirό I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membrane Sci 358:67–75

    Article  CAS  Google Scholar 

  • Mittal K (2009) Contact angle, wettability and adhesion, vol 6. Leiden, Boston

    Google Scholar 

  • Moutinho I, Figueiredo M, Ferreira P (2007) Evaluating the surface energy of laboratory-made paper sheets by contact angle measurements. Tappi J 6:26–32

    CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Östenberg M, Ruokolainen J, Laine J, Larsson P, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Papakonstantinou D, Amanatides E, Mataras D, Ioannidis V, Nikolopoulos P (2007) Improved surface energy analysis for plasma treated PET films. Plasma Process Polym 4:1057–1062

    Article  Google Scholar 

  • Rasband W (1997) ImageJ. U.S. National Institutes of Health, Bethesda. http://rsb.info.nih.gov/ij

  • Ryan B, Poduska K (2008) Roughness effects on contact angle measurements. Am J Phys 76:1074–1077

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13:773–782

    Article  CAS  Google Scholar 

  • Taniguchi T (1998) New films produced from microfibrillated natural fibers. Polym Int 47:291–294

    Article  CAS  Google Scholar 

  • Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:813

    Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Zhang C, Wang L, Zhao J, Zhu P (2011) Effect of drying methods on structure and mechanical properties of bacterial cellulose films. Adv Mater Res 239–242:2667–2670

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Per Olav Johnsen for acquisition of FESEM images, Professor Torbjørn Helle for linguistic help, and project partners in the SustainBarrier project at PFI for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Rodionova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodionova, G., Eriksen, Ø. & Gregersen, Ø. TEMPO-oxidized cellulose nanofiber films: effect of surface morphology on water resistance. Cellulose 19, 1115–1123 (2012). https://doi.org/10.1007/s10570-012-9721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9721-5

Keywords

Navigation