Skip to main content
Log in

Highly physical penumbra solar radiation pressure modeling with atmospheric effects

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth’s penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the \(\hbox {sub-nm}/\hbox {s}^{2}\) precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Anderson, G.P., Chetwynd, J.H., Clough, S.A., Shettle, E.P., Kneizys, F.X.: AFGL atmospheric constituent profiles (0–120 km). Tech. Rep. AFGL-TR-86-0110, Air Force Geophysics Laboratory (1986)

  • Ångström, A.: On the atmospheric transmission of Sun radiation and on dust in the air. Geogr. Ann. 11, 156–166 (1929). doi:10.2307/519399

    Google Scholar 

  • ASTM: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37\(^\circ \) tilted surface. doi:10.1520/G0173-03R12 (2012)

  • ASTM: Standard solar constant and zero air mass solar spectral irradiance tables. doi:10.1520/E0490 (2014)

  • Auer, L.H., Standish, E.M.: Astronomical refraction: computational method for all zenith angles. Astron. J. 199(5), 2472–2474 (2000). doi:10.1086/301325

    Article  ADS  Google Scholar 

  • Bates, D.R.: Rayleigh scattering by air. Planet. Space Sci. 32, 785–790 (1984). doi:10.1016/0032-0633(84)90102-8

    Article  ADS  Google Scholar 

  • Bettadpur, S.: Gravity recovery and climate experiment product specification document (Rev 4.5—February 20, 2007). Tech. Rep. GRACE 327-720/CSR-GR-03-02, Center for Space Research, The University of Texas at Austin. ftp://podaac.jpl.nasa.gov/pub/grace/doc/ProdSpecDoc_v4.5.pdf (2007)

  • Bettadpur, S.: Recommendation for a-priori bias & scale parameters for Level-1B ACC data (Release 00). http://podaac-www.jpl.nasa.gov/ (2009)

  • Bird, R.E.: A simple, solar spectral model for direct-normal and diffuse horizontal irradiance. Sol. Energy 32(4), 461–471 (1984). doi:10.1016/0038-092X(84)90260-3

    Article  ADS  Google Scholar 

  • Cameron, W.S., Glenn, J.H., Carpenter, M.S., O’Keefe, J.A.: Effect of refraction on the setting Sun as seen from space in theory and observation. Astron. J. 68, 348 (1963). doi:10.1086/108982

    Article  ADS  Google Scholar 

  • Cheng, M., Ries, J.C., Tapley, B.D.: Assessment of solar radiation model for GRACE orbit determination. Adv. Astronaut. Sci. 129, 501–510 (2007)

  • COESA: US Standard Atmosphere Supplements, 1966. Commitee for the Extension of the Standard Atmosphere, US Government Printing Office, Washington, DC (1966)

  • Doornbos, E., Scharroo, R., Klinkrad, H., Zandbergen, R., Fritsche, B.: Improved modelling of surface forces in the orbit determination of ERS and ENVISAT. Can. J. Remote Sens. 28(4), 535–543 (2002). doi:10.5589/m02-055

    Article  ADS  Google Scholar 

  • Doornbos, E., Förster, M., Fritsche, B., van Hellepute, T., van den IJssel, J., Koppenwallner, G., Lühr, H., Rees, D., Visser, P., Kern, M.: Air density models derived from multisatellite drag observations. In: Proceedings of the ESA’s Second Swarm International Science Meeting (2010)

  • ESA: Gravity Recovery and Steady-state Ocean Circulation Mission. Tech. Rep. ESA SP-1233(1), ESA publication division (1999)

  • Ferraz-Mello, S.: Sur le probleme de la pression de radiations dans la theorie des satellites artificiels. Comptes Rendus de l’Académie des Sci. 258, 463 (1964)

    Google Scholar 

  • Ferraz-Mello, S.: Analytical study of the Earth’s shadowing effects on satellite orbits. Celest. Mech. 5(1), 80–101 (1972). doi:10.1007/BF01227825

    Article  ADS  Google Scholar 

  • Flury, J., Bettadpur, S., Tapley, B.D.: Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res. 42(8), 1414–1423 (2008). doi:10.1016/j.asr.2008.05.004

    Article  ADS  Google Scholar 

  • Garfinkel, B.: An investigation in the theory of astronomical refraction. Astron. J. 50, 169–179 (1944). doi:10.1086/105767

    Article  MathSciNet  ADS  Google Scholar 

  • Garfinkel, B.: Astronomical refraction in a polytropic atmosphere. Astron. J. 72, 235–254 (1967). doi:10.1086/110225

    Article  ADS  Google Scholar 

  • Gueymard, C.: Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy 71(5), 325–346 (2001). doi:10.1016/s0038-092x(01)00054-8

    Article  ADS  Google Scholar 

  • Hubaux, C., Lematre, A., Delsate, N., Carletti, T.: Symplectic integration of space debris motion considering several Earth’s shadowing models. Adv. Space Res. 49(10), 1472–1486 (2012). doi:10.1016/j.asr.2012.02.009

    Article  ADS  Google Scholar 

  • Jursa, A.S. (ed).: Handbook of geophysics and the space environment. Air Force Geophysics Laboratory Hanscom (1985)

  • Kabeláč, J.: Shadow function—contribution to the theory of the motion of artificial satellites. Bull. Astron. Inst. Czechoslov. 39(4), 213–220 (1988)

    MATH  ADS  Google Scholar 

  • Kozai, Y.: Effects of Solar Radiation Pressure on the Motion of an Artificial Satellite. SAO Special Report 56 (1961)

  • Lála, P.: Semi-analytical theory of solar pressure perturbations of satellite orbits during short time intervals. Bull. Astron. Inst. Czechoslov. 22(2), 63–72 (1971)

    ADS  Google Scholar 

  • Lála, P., Sehnal, L.: The Earth’s shadowing effects in the short-periodic perturbations of satellite orbits. Bull. Astron. Inst. Czechoslov. 20, 328 (1969)

    ADS  Google Scholar 

  • Lelli, L., Kokhanovsky, A.A., Rozanov, V.V., Vountas, M., Sayer, A.M., Burrows, J.P.: Seven years of global retrieval of cloud properties using space-borne data of GOME-1. Atmos. Meas. Tech. Discuss. 4, 4991–5035 (2011). doi:10.5194/amtd-4-4991-2011

    Article  Google Scholar 

  • Link, F.: Eclipses de satellites artificiels. Bull. Astron. Inst. Czechoslov. 13(1), 1–8 (1962)

    MATH  MathSciNet  ADS  Google Scholar 

  • McCartney, E.J.: Optics of the Atmosphere: Scattering by Molcules and Particles. Wiley, New York (1976)

    Google Scholar 

  • McMahon, J.W., Scheeres, D.J.: New solar radiation pressure force model for navigation. J. Guid. Control Dyn. 33, 1418–1428 (2010). doi:10.2514/1.48434

    Article  ADS  Google Scholar 

  • Montenbruck, O., Gill, E.: Satellite Orbits—models, Methods and Applications. Springer, Berlin (2000)

    MATH  Google Scholar 

  • Picard, A., Davis, R.S., Gläser, M., Fujii, K.: Revised formula for the density of moist air (CIPM-2007). Metrologia 45(2), 149 (2008). doi:10.1088/0026-1394/45/2/004

    Article  ADS  Google Scholar 

  • Reigber, C., Schwintzer, P., Lühr, H.: The CHAMP geopotential mission. In: Marson I, Sünkel H (eds) Bollettino di Geofisica Teorica ed Applicata, Vol. 40, No. 3-4, Sep.-Dec. 1999, Proceedings of the 2nd Joint Meeting of the International Gravity and the International Geoid Commission, Trieste 7–12 Sept. 1998, ISSN 0006-6729, pp. 285–289 (1999)

  • Rossow, W.B., Schiffer, R.A.: Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2288 (1999). doi:10.1175/1520-0477

    Article  ADS  Google Scholar 

  • Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Benner, D.C., Bernath, O.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R., et al.: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). doi:10.1016/j.jqsrt.2013.07.002

    Article  ADS  Google Scholar 

  • Sassen, K., Wang, Z., Liu, D.: Global distribution of cirrus clouds from cloudsat/cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements. J. Geophys. Res. (Atmos.) 113(D8), D00A12 (2008). doi:10.1029/2008JD009972

    ADS  Google Scholar 

  • Seidelmann, P.K. (ed.): Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, CA, United States Naval Observatory, Washington, DC (1992)

  • Shettle, E.P., Fenn, R.W.: Models of the atmospheric aerosols and their optical properties. In: AGARD Conference Proceedings, Lyngby, Denmark, 183 (1976)

  • Shettle, E.P., Fenn, R.W.: Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations On Their Optical Properties. Tech. Rep. TR-79-0214, ADA 085951, AFGL (1979)

  • Shoemake, K.: Animating rotation with quaternion curves. In: ACM SIGGRAPH Computer Graphics. ACM, vol. 19, pp. 245–254 (1985). doi:10.1145/325165.325242

  • Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment, mission overview and early results. Geophys. Res. Lett. 31(9), L09,607 (2004). doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tapley, B.D., Ries, J.C., Bettadpur, S., Cheng, M.: Neutral density measurements from the gravity recovery and climate experiment accelerometers. J. Spacecr. Rockets 44(6), 1220–1225 (2007). doi:10.2514/1.28843

  • Thomas, G., Stamnes, K.: Radiative Transfer in the Atmosphere and Ocean. Atmospheric and Space Science, Cambridge University Press (2002). http://books.google.com/books?id=DxR2nEp0CUIC

  • Van Helleputte, T., Doornbos, E., Visser, P.: CHAMP and GRACE accelerometer calibration by GPS-based orbit determination. Adv. Space Res. 43(12), 1890–1896 (2009). doi:10.1016/j.asr.2009.02.017

    Article  ADS  Google Scholar 

  • Vokrouhlický, D., Farinella, P., Mignard, F.: Solar radiation pressure perturbations for Earth satellites, I. A complete theory including penumbra transitions. Astron. Astrophys. 280, 295–312 (1993)

    ADS  Google Scholar 

  • Vokrouhlický, D., Farinella, P., Mignard, F.: Solar radiation pressure perturbations for Earth satellites, IV. Effects of the Earth’s polar flattening on the shadow structure and the penumbra transitions. Astron. Astrophys. 307, 635–644 (1996)

    ADS  Google Scholar 

  • Wyatt, S.P.: The effect of radiation pressure on the secular acceleration of satellites. SAO Special Report 60 (1961)

  • Wylie, D., Jackson, D.L., Menzel, W.P., Bates, J.J.: Trends in global cloud cover in two decades of HIRS observations. J. Clim. 18, 3021–3031 (2005). doi:10.1175/JCLI3461.1

    Article  ADS  Google Scholar 

  • Ziebart, M.: Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J. Spacecr. Rockets 41(5), 840–848 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research began in 2010 during a Research Internships in Science and Engineering (RISE) internship funded by the German Academic Exchange Service (DAAD) and carried out at the Institute for Geodesy (IFE) at Leibniz Universität in Hannover, Germany. Robert Robertson was supported by a Virginia Space Grant Consortium (VSGC) Graduate Research Fellowship. The authors would like to thank Professor David Vokrouhlický from Charles University in Prague for providing invaluable guidance on understanding and implementing his SRP modeling methods which our work builds upon. Jakob Flury was supported by the Center of Excellence QUEST and by the DFG Sonderforschungsbereich SFB1128 “Relativistic Geodesy and Gravimetry with Quantum Sensors”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Robertson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, R., Flury, J., Bandikova, T. et al. Highly physical penumbra solar radiation pressure modeling with atmospheric effects. Celest Mech Dyn Astr 123, 169–202 (2015). https://doi.org/10.1007/s10569-015-9637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9637-0

Keywords

Navigation