Skip to main content
Log in

Jumping mechanisms of Trojan asteroids in the planar restricted three- and four-body problems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We explore minimal dynamical mechanisms for the transport of Trojan asteroids between the vicinities of the stable Lagrange points \(L_{4}\) and \(L_{5}\) within the framework of the planar restricted three- and four-body problems. This transport, called “jumping” of Trojan asteroids, has been observed numerically in the sophisticated Solar System models. However its dynamical mechanisms have not been fully explored yet. The present study shows that invariant manifolds emanating from an unstable periodic orbit around the unstable Lagrange point \(L_{3}\) mediate the jumping of Trojan asteroids in the Sun–Jupiter planar restricted three-body problem. These invariant manifolds form homoclinic tangles and lobes when projected onto the configuration space through a discrete mapping. Thus the resulted lobe dynamics explains the mechanism for the jumping of Jupiter’s Trojan asteroids. In the Sun–Earth planar restricted three-body problem, on the other hand, invariant manifolds of an unstable periodic orbit around \(L_{3}\) do not exhibit clear homoclinic tangles nor lobes, indicating that the jumping is very difficult to occur. It is then shown that the effect of perturbation of Venus is important for the onset of the jumping of Earth’s Trojan asteroids within the framework of the Sun–Earth–Venus planar restricted four-body problem. The results presented here could shed new insights into the transport mechanism as well as trajectory design associated with \(L_{3}\), \(L_{4}\), and \(L_5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J.J., Petit, J.M., Gwyn, S.: Uranian Trojan and the frequency of temporary giant-planet co-orbitals. Science 341, 994 (2013)

    Article  ADS  Google Scholar 

  • Anderson, R.L., Lo, M.W.: Flyby design using heteroclinic and homoclinic connections of unstable resonant orbits. AAS/AIAA Space Flight Mechanics Meeting, AAS 11–125, New Orleans, LA, 13–17 February, (2011)

  • Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. IJBC 21, 2179–2193 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  • Barrabés, E., Ollé, M.: Invariant manifolds of \(L_{3}\) and horseshoe motion in the restricted three-body problem. Nonlinearity 19, 2065–2089 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993)

    Article  ADS  Google Scholar 

  • Belbruno, E., Topputo, F., Gidea, M.: Resonance transitions associated to weak capture in the restricted three-body problem. Adv. Space Res. 42, 1330–1351 (2008)

    Article  ADS  Google Scholar 

  • Bowell, E., Holt, H.E., Levy, D.H., Innanen, K.A., Mikkola, S., Shoemaker, E.M.: 1990MB: the first Mars Trojan. BAAS 22(4), 1357 (1990)

    ADS  Google Scholar 

  • Brasser, R., Innanen, K.A., Connors, M., Veillet, C., Wiegert, P., Mikkola, S., et al.: Transient co-orbital asteroids. Icarus 171, 102–109 (2004)

    Article  ADS  Google Scholar 

  • Ceccaroni, M., Biggs, J.: Low-thrust propulsion in a coplanar circular restricted four body problem. Celest. Mech. Dyn. Astron. 112, 191–219 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Connors, M., Wiegert, P., Veillet, C.: Earth’s Trojan asteroid. Nature 475, 481–483 (2011)

    Article  ADS  Google Scholar 

  • Davis, K., Born, G., Butcher, E.: Transfers to Earth–Moon \(L_{3}\) halo orbits. Acta Astronaut. 88, 116–128 (2013)

    Article  ADS  Google Scholar 

  • Du Toit, P., Mezić, I., Marsden, J.E.: Coupled oscillator models with no scale separation. Phys. D 238, 490–501 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Dvorak, R., Schwarz, R.: On the stability regions of the Trojan asteroids. Celest. Mech. Dyn. Astron. 92, 19–28 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Folta, D.C., Woodard, M., Howell, K., Patterson, C., Schlei, W.: Applications of multi-body dynamical environments: the ARTEMIS transfer trajectory design. Acta Astronaut. 73, 237–249 (2012)

    Article  ADS  Google Scholar 

  • Freistetter, F.: The size of the stability regions of Jupiter Trojans. Astron. Astrophys. 453, 353–361 (2006)

    Article  ADS  Google Scholar 

  • Gawlik, E.S., Marsden, J.E., Du Toit, P.C., Campagnola, S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 103, 227–249 (2009)

    Article  ADS  MATH  Google Scholar 

  • Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D 149, 248–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Wellington (2008)

    Google Scholar 

  • Kordylewski, K.: Photographische Untersuchungen des Librationspunktes \(L_5\) im System Erde-Mond. Acta Astron. 11, 165–169 (1961)

    ADS  MathSciNet  Google Scholar 

  • Llanos, P.J., Hintz, G.R., Lo, M.W., Miller, J.K.: Powered Heteroclinic and Homoclinic Connections between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations. AAS/AIAA Astrodynamics Specialist Conference, AAS 13–786, Hilton Head, SC, 11–15 August, 2013

  • Lo, M.W., Williams, B., Bollman, W.E., Han, D., Hahn, Y., Bell, J.L., et al.: GENESIS Mission Design. AAS/AIAA Astrodynamics Specialist Conference, AIAA 98–4468, Boston, MA, 10–12 August, 1998

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  • Oshima, K., Yanao, T.: Applications of Gravity Assists in the Bicircular and Bielliptic Restricted Four-Body Problem. AAS/AIAA Space Flight Mechanics Meeting, AAS 14–234, Santa Fe, NM, 26–30 January, 2014

  • Pergola, P., Geurts, K., Casaregola, C., Andrenucci, M.: Earth–Mars halo to halo low thrust manifold transfers. Celest. Mech. Dyn. Astron. 105, 19–32 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Qi, R., Xu, S.J.: Applications of lagrangian coherent structures to expression of invariant manifolds in astrodynamics. Astrophys. Space. Sci. 351, 125–133 (2014)

    Article  ADS  Google Scholar 

  • Ren, Y., Masdemont, J.J., Gómez, G., Fantino, E.: Two mechanisms of natural transport in the Solar System. Commun. Nonlinear. Sci. Numer. Simul. 17, 844–853 (2012)

    Article  ADS  MATH  Google Scholar 

  • Ross, S.D., Scheeres, D.J.: multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6, 576–596 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Schwarz, R., Dvorak, R.: Trojan capture by terrestrial planets. Celest. Mech. Dyn. Astron. 113, 23–34 (2012)

    Article  ADS  Google Scholar 

  • Short, C.R., Howell, K.C.: Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes. Acta Astronaut. 94, 592–607 (2013)

    Article  ADS  Google Scholar 

  • Short, C.R., Blazevski, D., Howell, K.C., Haller, G.: Flow Control Segment and Lagrangian Coherent Structure Approaches for Application in Multi-Body Problems. AAS/AIAA Space Flight Mechanics Meeting, AAS 14–235, Santa Fe, NM, 26–30 January, 2014

  • Stuart, J.R., Howell, K.C., Wilson, R.S.: Automated design of propellant-optimal, low-thrust trajectories for trojan asteroid tours. J. Spacecr. Rockets 51, 1631–1647 (2014)

    Article  ADS  Google Scholar 

  • Tantardini, M., Fantino, E., Ren, Y., Pergola, P., Gómez, G., Masdemont, J.J.: Spacecraft trajectories to the \(L_{3}\) point of the Sun–Earth three-body problem. Celest. Mech. Dyn. Astron. 108, 215–232 (2010)

    Article  ADS  MATH  Google Scholar 

  • Tsiganis, K., Dvorak, R., Pilat-Lohinger, E.: Thersites: a ’jumping’ Trojan? Astron. Astrophys. 354, 1091–1100 (2000)

    ADS  Google Scholar 

  • Topputo, F.: On optimal two-impulse Earth–Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117, 279–313 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Uesugi, K.: Results of the MUSES-A “HITEN” mission. Adv. Space. Res. 18, 69–72 (1996)

    Article  ADS  Google Scholar 

  • Vaquero, M., Howell, K.C.: Design of transfer trajectories between resonant orbits in the Earth–Moon restricted problem. Acta Astronaut. 94, 302–317 (2014)

    Article  ADS  Google Scholar 

  • Wasserman, L.H., Ryan, E.L., Buie, M.W., Millis, R.L., Kern, S.D., Elliot, J.L., et al.: 2001 QQ322. MPEC 2001–V11 (2001)

  • Wiggins, S.: Chaotic Transport in Dynamical Systems. Springer, New York (1991)

    Google Scholar 

  • Williams, D.R.: Planetary Fact Sheet. NASA: National Aeronautics and Space Administration. http://nssdc.gsfc.nasa.gov/planetary/factsheet/ (2014)

  • Wolf, M.: Wiederauffindung des Planeten (588)[1906TG]. AN 174, 47 (1907)

    ADS  Google Scholar 

  • Yeomans, D.K.: NASA jet propulsion laboratory: solar system dynamics. http://ssd.jpl.nasa.gov/ (2014)

Download references

Acknowledgments

The authors would like to thank Wang Sang Koon for valuable comments and encouragements. The authors are also grateful to Stefano Campagnola and Hiroaki Yoshimura for stimulating discussions. This work has been partially supported by JSPS Grants-in-Aid, No. 23740300 and No. 26800207, and by Waseda University Grant for SR 2012A-602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Oshima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, K., Yanao, T. Jumping mechanisms of Trojan asteroids in the planar restricted three- and four-body problems. Celest Mech Dyn Astr 122, 53–74 (2015). https://doi.org/10.1007/s10569-015-9609-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9609-4

Keywords

Navigation