Skip to main content
Log in

Tidal torques: a critical review of some techniques

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We review some techniques employed in the studies of torques due to bodily tides, and explain why the MacDonald formula for the tidal torque is valid only in the zeroth order of the eccentricity divided by the quality factor, while its time-average is valid in the first order. As a result, the formula cannot be used for analysis in higher orders of e/Q. This necessitates some corrections in the current theory of tidal despinning and libration damping (though the qualitative conclusions of that theory may largely remain correct). We demonstrate that in the case when the inclinations are small and the phase lags of the tidal harmonics are proportional to the frequency, the Darwin-Kaula expansion is equivalent to a corrected version of the MacDonald method. The latter method rests on the assumption of existence of one total double bulge. The necessary correction to MacDonald’s approach would be to assert (following Singer, Geophys. J. R. Astron. Soc., 15: 205–226, 1968) that the phase lag of this integral bulge is not constant, but is proportional to the instantaneous synodal frequency (which is twice the difference between the evolution rates of the true anomaly and the sidereal angle). This equivalence of two descriptions becomes violated by a nonlinear dependence of the phase lag upon the tidal frequency. It remains unclear whether it is violated at higher inclinations. Another goal of our paper is to compare two derivations of a popular formula for the tidal despinning rate, and emphasise that both are strongly limited to the case of a vanishing inclination and a certain (sadly, unrealistic) law of frequency-dependence of the quality factor Q—the law that follows from the phase lag being proportional to frequency. One of the said derivations is based on the MacDonald torque, the other on the Darwin torque. Fortunately, the second approach is general enough to accommodate both a finite inclination and the actual rheology. We also address the rheological models with the Q factor scaling as the tidal frequency to a positive fractional power, and disprove the popular belief that these models introduce discontinuities into the equations and thus are unrealistic at low frequencies. Although such models indeed make the conventional expressions for the torque diverge at vanishing frequencies, the emerging infinities reveal not the impossible nature of one or another rheology, but a subtle flaw in the underlying mathematical model of friction. Flawed is the common misassumption that damping merely provides phase lags to the terms of the Fourier series for the tidal potential. A careful hydrodynamical treatment by Sir George Darwin (1879), with viscosity explicitly included, had demonstrated that the magnitudes of the terms, too, get changed—a fine detail later neglected as “irrelevant”. Reinstating of this detail tames the fake infinities and rehabilitates the “impossible” scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies). Finally, we explore the limitations of the popular formula interconnecting the quality factor and the phase lag. It turns out that, for low values of Q, the quality factor is no longer equal to the cotangent of the lag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M.E.: The weak-friction approximation and tidal evolution in close binary systems. Astrophys. Space Sci. 23, 459–510 (1973)

    Article  ADS  Google Scholar 

  • Bills, B.G., Neumann, G.A., Smith, D.E., and Zuber, M.T.: Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J. Geophys. Res. 110, 2376–2406 (2005) doi:10.1029/2004JE002376, 2005

    Google Scholar 

  • Churkin, V.A.: The Love numbers for the models of inelastic Earth.” Preprint No 121. Institute of Applied Astronomy. St.Petersburg, Russia (1998) (in Russian)

  • Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)

    Article  ADS  Google Scholar 

  • Darwin G.H.: On the precession of a viscous spheroid and on the remote history of the Earth. Philos. Trans. R. Soc. London 170, 447–530 (1879) http://www.jstor.org/view/02610523/ap000081/00a00010/

  • Darwin G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. R. Soc. London 171, 713–891 (1880) http://www.jstor.org/view/02610523/ap000082/00a00200

  • Darwin, G.H.: Tidal friction and cosmogony. In: Darwin, G.H., Scientific Papers, Vol. 2. Cambridge University Press, NY (1908)

  • Dobrovolskis A.: Chaotic rotation of Nereid?. Icarus 118, 181–195 (1995)

    Article  ADS  Google Scholar 

  • Dobrovolskis A.: Spin states and climates of eccentric exoplanets. Icarus 192, 1–23 (2007)

    Article  ADS  Google Scholar 

  • Efroimsky, M.: The theory of bodily tides. The models and the physics. astro-ph/0605521 (2006)

  • Efroimsky, M.: Can the tidal quality factors of terrestrial planets and moons scale as positive powers of the tidal frequency? (2008) arXiv:0712.1056

  • Efroimsky M., Lainey V.: The physics of bodily tides in terrestrial planets, and the appropriate scales of dynamical evolution. J. Geophys. Res. Planets 112, E12003 (2007). doi:10.1029/2007JE002908

    Article  ADS  Google Scholar 

  • Ferraz-Mello S., Rodríguez A., Hussmann H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest Mech Dyn Astron 101, 171–201 (2008)

    Article  MATH  ADS  Google Scholar 

  • Gerstenkorn H.: Über Gezeitenreibung beim Zweikörperproblem. Zeitschrift für Astrophysik 36, 245–274 (1955)

    MATH  ADS  MathSciNet  Google Scholar 

  • Getino, J., Escapa, A., and Garcf́a, A.: Spheroidal and toroidal modes for tidal kinetic energy in axisymmetric, slightly elliptical, elastic bodies. Rom. Astron. J. , 143–161 (2003)

  • Goldreich P.: History of the Lunar orbit. Rev. Geophys. 4, 411–439 (1966a)

    Article  ADS  Google Scholar 

  • Goldreich P.: Final spin states of planets and satellites. Astron. J. 4, 411–439 (1966b)

    Google Scholar 

  • Goldreich P., Peale S.: Spin-orbit coupling in the Solar System. Astron. J. 71, 425–438 (1966)

    Article  ADS  Google Scholar 

  • Gooding R.H., Wagner C.A.: On the inclination functions and a rapid stable procedure for their evaluation together with derivatives. Celest Mech Dyn Astron 101, 247–272 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Gurfil P., Lainey V., Efroimsky M.: Long-term evolution of orbits about a precessing oblate planet: 3. A semianalytical and a purely numerical approach. Celest Mech Dyn Astron 99, 261–292 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Herschel, J.F.W.: About volcanoes and earthquakes. Good Words 4, 53–58 (1863). (Reprinted in: Herschel, J.F.W.: Familiar Lectures on Scientific Subjects, pp. 1–46. Alexander Strahan Publishers, London (1866))

    Google Scholar 

  • Hut P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)

    MATH  ADS  Google Scholar 

  • Innanen K.A., Zheng J.Q., Mikkola S., Valtonen M.J.: The Kozai mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113, 1915–1919 (1997)

    Article  ADS  Google Scholar 

  • Johnson, S.: A Dictionary of the English Language: in which the words are deduced from their originals, and illustrated with their different significations by examples from the best writers; to which are prefixed a history of the language, and an English grammar. Printed by W. Strahan, for J. and P. Knapton, T. and T. Longman, C. Hitch, L. Hawes, A. Millar, R. and J. Dodsley, Folio, London (1755)

  • Kant, I.: Untersuchung der Frage, ob die Erde in ihrer Umdrehung um die Achse, wodurch sie die Abwechselung des Tages und der Nacht hervorbringt, einige Veränderung seit den ersten Zeiten ihres Ursprungs erlitten habe und woraus man sich ihrer versichern könne, welche von der Königl. Akademie der Wissenschaften zu Berlin zum Preise für das jetztlaufende Jahr aufgegeben worden. In: Kant’s gesammelte Schriften I, 183–191. Edited by the Royal Prussian Academy of Sciences, George Reimer, Berlin 1900 (1754) http://www.ikp.uni-bonn.de/Kant/aa01/Inhalt1.html [English translations: Kant, I.: Essay on the Retardation of the Rotation of the Earth. Translation by William Hastie, in: Hastie, W. 1900. Kant’s Cosmogony, as in his Essay on the Retardation of the Rotation of the Earth and his Natural History and Theory of the Heavens. pp. 157–165. J Maclehose Publishers, Glasgow, 1900. Reprinted: 1968, ed. Willy Ley (Greenwood, NY), and 1969, ed. Milton K. Munitz (University of Michigan Press) (1754)]

  • Karato S.-I.: Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, UK (2007)

    Google Scholar 

  • Kaula W.M.: Analysis of gravitational and geometric aspects of geodetic utilisation of satellites. Geophys. J. 5, 104–133 (1961)

    Article  MATH  ADS  Google Scholar 

  • Kaula W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–684 (1964)

    Article  ADS  Google Scholar 

  • Kaula, W.M.: Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Blaisdell Publishing Co, Waltham MA (1966). (Re-published in 2006 by Dover. ISBN: 0486414655)

  • Kaula W M.: An Introduction to Planetary Physics. Wiley, NY (1968)

    Google Scholar 

  • Kozai Y.: The motion of a close earth satellite. Astron. J. 64, 367–377 (1959a)

    Article  ADS  MathSciNet  Google Scholar 

  • Kozai Y.: On the effects of the Sun and the Moon upon the motion of a close Earth satellite. SAO Spec. Rep. 22, 7–10 (1959b)

    ADS  Google Scholar 

  • Kozai Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • Krasinsky G.A.: Dynamical history of the Earth-Moon system. Celest. Mech. Dyn. Astron. 84, 27–55 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Krasinsky G.A.: Numerical theory of rotation of the deformable Earth with the two-layer fluid core. Part 1: mathematical model. Celest. Mech. Dyn. Astron. 96, 169–217 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Lambeck K.: The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, Cambridge, UK (1980)

    Google Scholar 

  • MacDonald G.J.F.: Tidal friction. Rev. Geophys. 2, 467–541 (1964)

    Article  ADS  Google Scholar 

  • Mignard F.: The evolution of the lunar orbit revisited. I. Moon Planets 20, 301–315 (1979)

    Article  MATH  ADS  Google Scholar 

  • Mignard F.: The evolution of the lunar orbit revisited II. Moon Planets 23, 185–201 (1980)

    Article  ADS  Google Scholar 

  • Neron de Surgy O., Laskar J.: On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975–989 (1997)

    ADS  Google Scholar 

  • Peale S.: The free precession and libration of Mercury. Icarus 178, 4–18 (2005)

    Article  ADS  Google Scholar 

  • Roche, E.A.: Mémorie sur la figure d’une masse fluide, soumise a l’attraction d’un point éloingné.” Académie des Sciences et Lettres de Montpellier. Mémories de la Section des Sciences., Tome 1(3), 243–262 (1849) http://gallica.bnf.fr/ark:/12148/bpt6k209711r

  • Singer S.F.: The origin of the Moon and geophysical consequences. Geophys. J. R. Astron. Soc. 15, 205–226 (1968)

    Google Scholar 

  • Taff L.G.: Celestial Mechanics: A Computational Guide for the Practitioner, pp. 332–340. Wiley, NY (1985)

    Google Scholar 

  • Thomson W.: On the rigidity of the Earth. Philos. Trans. R. Soc. London 153, 573–582 (1863) http://www.jstor.org/view/02610523/ap000064/00a00270

    Google Scholar 

  • Tisserand, F.-F. (1896) Traité de Mécanique Céleste. Tome I. Perturbations des planètes d’après la méthode de la variation des constantes arbitraires. Gauthier Villars, Paris 1896. Chapitre X.

  • Touma J., Wisdom J.: Evolution of the Earth-Moon system. Astron. J. 108, 1943–1961 (1994)

    Article  ADS  Google Scholar 

  • Williams J.G., Benson G.S.: Resonances in the Neptune-Pluto System. Astron. J. 71, 167–176 (1971)

    Article  ADS  Google Scholar 

  • Williams J.G., Boggs D.H., Yoder C.F., Ratcliff J.T., Dickey J.O.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planets 106(E11), 27933–27968 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Efroimsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efroimsky, M., Williams, J.G. Tidal torques: a critical review of some techniques. Celest Mech Dyn Astr 104, 257–289 (2009). https://doi.org/10.1007/s10569-009-9204-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9204-7

Keywords

Navigation