, Volume 96, Issue 3-4, pp 259-288

Long-term evolution of orbits about a precessing oblate planet. 2. The case of variable precession

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We continue the study undertaken in Efroimsky [Celest. Mech. Dyn. Astron. 91, 75–108 (2005a)] where we explored the influence of spin-axis variations of an oblate planet on satellite orbits. Near-equatorial satellites had long been believed to keep up with the oblate primary’s equator in the cause of its spin-axis variations. As demonstrated by Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199 (2004)], this opinion had stemmed from an inexact interpretation of a correct result by Goldreich [Astron. J. 70, 5–9 (1965)]. Although Goldreich [Astron. J. 70, 5–9 (1965)] mentioned that his result (preservation of the initial inclination, up to small oscillations about the moving equatorial plane) was obtained for non-osculating inclination, his admonition had been persistently ignored for forty years. It was explained in Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199 (2004)] that the equator precession influences the osculating inclination of a satellite orbit already in the first order over the perturbation caused by a transition from an inertial to an equatorial coordinate system. It was later shown in Efroimsky [Celest. Mech. Dyn. Astron. 91, 75–108 (2005a)] that the secular part of the inclination is affected only in the second order. This fact, anticipated by Goldreich [Astron. J. 70, 5–9 (1965)], remains valid for a constant rate of the precession. It turns out that non-uniform variations of the planetary spin state generate changes in the osculating elements, that are linear in $| \varvec{\dot{\vec{\mu}}} |$ , where $\varvec{\vec{\mu}}$ is the planetary equator’s total precession rate that includes the equinoctial precession, nutation, the Chandler wobble, and the polar wander. We work out a formalism which will help us to determine if these factors cause a drift of a satellite orbit away from the evolving planetary equator.

By “precession,” in its most general sense, we mean any change of the direction of the spin axis of the planet—from its long-term variations down to nutations down to the Chandler wobble and polar wander.