Skip to main content
Log in

Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Methuosis is a form of non-apoptotic cell death involving massive vacuolization of macropinosome-derived endocytic compartments, followed by a decline in metabolic activity and loss of membrane integrity. To explore the induction of methuosis as a potential therapeutic strategy for killing cancer cells, we have developed small molecules (indole-based chalcones) that trigger this form of cell death in glioblastoma and other cancer cell lines. Here, we report that in addition to causing fusion and expansion of macropinosome compartments, the lead compound, 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), disrupts vesicular trafficking at the lysosomal nexus, manifested by impaired degradation of EGF and LDL receptors, defective processing of procathepsins, and accumulation of autophagosomes. In contrast, secretion of the ectodomain derived from a prototypical type-I membrane glycoprotein, β-amyloid precursor protein, is increased rather than diminished. A closely related MOMIPP analog, which causes substantial vacuolization without reducing cell viability, also impedes cathepsin processing and autophagic flux, but has more modest effects on receptor degradation. A third analog, which causes neither vacuolization nor loss of viability, has no effect on endolysosomal trafficking. The results suggest that differential cytotoxicity of structurally similar indole-based chalcones is related, at least in part, to the severity of their effects on endolysosomal trafficking pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aki T, Nara A, Uemura K. Cytoplasmic vacuolization during exposure to drugs and other substances. Cell Biol Toxicol. 2012;28:125–31.

    Article  CAS  PubMed  Google Scholar 

  • Bhanot H, Young AM, Overmeyer JH, Maltese WA. Induction of non-apoptotic cell death by activated Ras requires inverse regulation of Rac1 and Arf6. Mol Cancer Res. 2010;8:1358–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171:603–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerny J, Feng Y, Yu A, Miyake K, Borgonovo B, Klumperman J, et al. The small chemical vacuolin-1 inhibits Ca2+-dependent lysosomal exocytosis but not cell resealing. EMBO Rep. 2004;5:883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso GL, Gandy SE, Buxbaum JD, Greengard P. Chloroquine inhibits intracellular degradation but not secretion of Alzheimer β/A4 amyloid precursor protein. Proc Natl Acad Sci U S A. 1992;89:2252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash PK, Moore AN. Inhibitors of endocytosis, endosome fusion, and lysosomal processing inhibit the intracellular proteolysis of the amyloid precursor protein. Neurosci Lett. 1993;164:183–6.

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B, Iwatsubo T, Wolfe MS. Presenilins and gamma-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harbor Perspect Med. 2012;2:a006304.

    Article  Google Scholar 

  • Delbruck R, Desel C, von Figura K, Hille-Rehfeld A. Proteolytic processing of cathepsin D in prelysosomal organelles. Eur J Cell Biol. 1994;64:7–14.

    CAS  PubMed  Google Scholar 

  • Dugan JM, deWit C, McConlogue L, Maltese WA. The ras-related GTP binding protein, Rab1B, regulates early steps in exocytic transport and processing of β-amyloid precursor protein. J Biol Chem. 1995;270:10982–9.

    Article  CAS  PubMed  Google Scholar 

  • Dunn WAJ. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990;110:1935–45.

    Article  CAS  PubMed  Google Scholar 

  • Dunn WAJ. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 1994;4:139–43.

    Article  CAS  PubMed  Google Scholar 

  • Eden ER, White IJ, Tsapara A, Futter CE. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol. 2010;12:267–72.

    CAS  PubMed  Google Scholar 

  • Edgar JR, Willen K, Gouras GK, Futter CE. ESCRTs regulate amyloid precursor protein sorting in multivesicular bodies and intracellular amyloid-beta accumulation. J Cell Sci. 2015;128:2520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskelinen EL. Maturation of autophagic vacuoles in mammalian cells. Autophagy. 2005;1:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol. 2011;13:1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon P, Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophy Res Commun. 1988;151:40–7.

    Article  CAS  Google Scholar 

  • Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 2011;1:442–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harbor Perspect Med. 2012;2:a006270.

    Article  Google Scholar 

  • Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW. Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer’s disease beta-secretase. J Biol Chem. 2000;275:33729–37.

    Article  CAS  PubMed  Google Scholar 

  • Johnson EE, Overmeyer JH, Gunning WT, Maltese WA. Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. J Cell Sci. 2006;119:1219–32.

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katunuma N. Posttranslational processing and modification of cathepsins and cystatins. J Signal Transduct. 2010;2010:Article ID 375345.

    Article  Google Scholar 

  • Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic. 2009;10:364–71.

    Article  CAS  PubMed  Google Scholar 

  • Kitambi SS, Toledo EM, Usoskin D, Wee S, Harisankar A, Svensson R, et al. Vulnerability of glioblastoma cells to catastrophic vacuolization and death induced by a small molecule. Cell. 2014;157:313–28.

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Eskelinen EL, Deretic V. Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes... Wait, I'm confused. Autophagy. 2014;10:549–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornienko A, Mathieu V, Rastogi SK, Lefranc F, Kiss R. Therapeutic agents triggering nonapoptotic cancer cell death. J Med Chem. 2013;56:4823–39.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J. 2010;29:3020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    Article  CAS  PubMed  Google Scholar 

  • Kuzu OF, Gowda R, Sharma A, Robertson GP. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol Cancer Ther. 2014;13:1690–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence B, Brown W. Autophagic vacuoles rapidly fuse with pre-existing lysosomes in cultured hepatocytes. J Cell Sci. 1992;102:515–26.

    PubMed  Google Scholar 

  • Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin a: evidence for membrane cycling from Golgi to ER. Cell. 1989;56:801–13.

    Article  CAS  PubMed  Google Scholar 

  • Madshus IH, Stang E. Internalization and intracellular sorting of the EGF receptor: a model for understanding the mechanisms of receptor trafficking. J Cell Sci. 2009;122:3433–9.

    Article  CAS  PubMed  Google Scholar 

  • Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am J Pathol. 2014;184:1630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maltese WA, Overmeyer JH. Non-apoptotic cell death associated with perturbations of macropinocytosis. Front Physiol. 2015;6:38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maltese WA, Wilson S, Tan Y, Suomensaari S, Sinha S, Barbour R, et al. Retention of the Alzheimer's amyloid precursor fragment C99 in the endoplasmic reticulum prevents formation of amyloid beta-peptide. J BiolChem. 2001;276:20267–79.

    CAS  Google Scholar 

  • McConlogue L, Castellano F, deWit C, Schenk D, Maltese WA. Differential effects of a Rab6 mutant on secretory versus amyloidogenic processing of Alzheimer’s b-amyloid precursor protein. J Biol Chem. 1996;271:1343–8.

    Article  CAS  PubMed  Google Scholar 

  • Minna E, Romeo P, De CL, Dugo M, Cassinelli G, Pilotti S, et al. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget. 2014;5:2513–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004;36:2491–502.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3:542–5.

    Article  CAS  PubMed  Google Scholar 

  • Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overmeyer JH, Kaul A, Johnson EE, Maltese WA. Active ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis. MolCancer Res. 2008;6:965–77.

    CAS  Google Scholar 

  • Overmeyer JH, Young AM, Bhanot H, Maltese WA. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol Cancer. 2011;10:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.

    Article  CAS  PubMed  Google Scholar 

  • Pasternak SH, Callahan JW, Mahuran DJ. The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer’s disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimers Dis. 2004;6:53–65.

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti N, Grodzki AC, Gorin F. Mis-trafficking of endosomal urokinase proteins triggers drug-induced glioma nonapoptotic cell death. Mol Pharmacol. 2015;87:683–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao MX, Bai JW, Zhang PF, Zhang YZ. PCSK9 regulates apoptosis in human neuroglioma u251 cells via mitochondrial signaling pathways. Int J Clin Exp Pathol. 2015;8:2787–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier S, Mayer G, Poupon V, McPherson PS, Desjardins R, Ly K, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem. 2009;284:28856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razi M, Chan EY, Tooze SA. Early endosomes and endosomal coatomer are required for autophagy. J Cell Biol. 2009;185:305–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Reyes EM, Salipur FR, Shams M, Forsthoefel MK, Bates PJ. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol Oncol. 2015;9:1392–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rijnboutt S, Stoorvogel W, Geuze HJ, Strous GJ. Identification of subcellular compartments involved in biosynthetic processing of cathepsin D. J Biol Chem. 1992;267:15665–72.

    CAS  PubMed  Google Scholar 

  • Robinson MW, Overmeyer JH, Young AM, Erhardt PW, Maltese WA. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J Med Chem. 2012;55:1940–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scotti E, Calamai M, Goulbourne CN, Zhang L, Hong C, Lin RR, et al. IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol Cell Biol. 2013;33:1503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature. 1999;402:537–40.

    Article  CAS  PubMed  Google Scholar 

  • Sisodia SS. β-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A. 1992;89:6075–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Kane SE, Gal S, Mason RW, Gottesman MM. Glycosylation of procathepsin L does not account for species molecular-mass differences and is not required for proteolytic activity. Biochem J. 1989;262:931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol. 1995;5:424–8.

    Article  CAS  PubMed  Google Scholar 

  • Tam JH, Seah C, Pasternak SH. The amyloid precursor protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Molecular Brain. 2014;7:54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005;1:84–91.

    Article  CAS  PubMed  Google Scholar 

  • Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol. 2014;24:26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabbic CJ, Dietsch HM, Alexander EM, Nagy PI, Robinson MW, Overmeyer JH, et al. Differential induction of cytoplasmic vacuolization and methuosis by novel 2-indolyl-substituted pyridinylpropenones. ACS Med Chem Lett. 2014;5:73–7.

    Article  CAS  PubMed  Google Scholar 

  • Trabbic CJ, Overmeyer JH, Alexander EM, Crissman EJ, Kvale HM, Smith MA, et al. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. J Med Chem. 2015;58:2489–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmer JB, Palade GE. Effects of Brefeldin A on the Golgi complex, endoplasmic reticulum and viral envelope glycoproteins in murine erythroleukemia cells. Eur J Cell Biol. 1991;54:38–54.

    CAS  PubMed  Google Scholar 

  • Unni AM, Lockwood WW, Zejnullahu K, Lee-Lin SQ, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. eLife. 2015;4:e06907.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286:735–41.

    Article  CAS  PubMed  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidemann A, Konig G, Bunke D, Fischer P, Salbaum JM, Masters CL, et al. Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell. 1989;57:115–26.

    Article  CAS  PubMed  Google Scholar 

  • Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, et al. Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol. 2005;171:87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, et al. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol. 2004;36:2531–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Molecular Brain. 2011;4:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (R01 CA115495) and by the Helen and Harold McMaster Endowment. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge Andrew Trunk and Bryan DeWitt for early exploratory work on this project.

Author contributions

NEM carried out all of the experiments, analyzed the results, and wrote the initial draft of the paper. JHO worked with NEM on the design, execution, and interpretation of the experiments. WAM conceived the idea for the project, directed the design of the experiments, and wrote the paper with NEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Maltese.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbah, N.E., Overmeyer, J.H. & Maltese, W.A. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol Toxicol 33, 263–282 (2017). https://doi.org/10.1007/s10565-016-9369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9369-2

Keywords

Navigation