Skip to main content
Log in

Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis

  • Perspectives
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ab initio thermodynamics and first-principles microkinetic simulations have become standard tools in research on model catalysts. Complementing dedicated in situ experiments these techniques contribute to our evolving mechanistic understanding, in particular of a reaction-induced dynamical evolution of the working catalyst surface. This topical review surveys the methodological foundations and ongoing developments of both techniques, and specifically illustrates the type of insights they provide in the context of in situ model catalyst studies. This insight points at substantial deviations from the standard picture that analyzes catalytic function merely in terms of properties of and processes at active sites as they emerge from a crystal lattice truncation of the nominal catalyst bulk material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ertl G (2010) Reactions at solid surfaces. Wiley, Hoboken

    Google Scholar 

  2. Somorjai GA, Li Y (2011) Proc Natl Acad Sci USA 108:917–924

    Article  CAS  Google Scholar 

  3. Newton MA (2008) Chem Soc Rev 37:2644–2657

    Article  CAS  Google Scholar 

  4. Schlögl R (2015) Angew Chem Int Ed 54:3465–3520

    Article  CAS  Google Scholar 

  5. Chorkendorff I, Niemantsverdriet H (2003) Concepts of modern catalysis and kinetics. Wiley, Weinheim

    Book  Google Scholar 

  6. van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley, Weinheim

    Book  Google Scholar 

  7. Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous catalysis. Wiley, Hoboken. ISBN 978-1-118-88895-7

    Book  Google Scholar 

  8. Stierle A, Molenbroek A (2007) MRS Bull 32:1001–1009

    Article  Google Scholar 

  9. Ziegler A, Graafsma H, Zhang XF, Frenken JWM (eds) (2014) In-situ materials characterization: across spatial and temporal scales. Springer, Berlin

    Google Scholar 

  10. Reuter K (2006) Oil Gas Sci. Technol. 61:471–477

    Article  CAS  Google Scholar 

  11. Reuter K (2006) Nanometer and sub-nanometer thin oxide films at surfaces of late transition metals. In: Heiz U, Landman U (eds) Nanocatalysis. Springer, Berlin. ISBN 978-3-540-32645-8

    Google Scholar 

  12. Lundgren E, Mikkelsen A, Andersen JN, Kresse G, Schmid M, Varga P (2006) J Phys 18:R481–R499

    CAS  Google Scholar 

  13. Over H (2012) Chem Rev 112:3356–3426

    Article  CAS  Google Scholar 

  14. Weaver JF (2013) Chem Rev 113:4164–4215

    Article  CAS  Google Scholar 

  15. Meyer J, Reuter K (2014) Angew Chem Int Ed 53:4721–4724

    Article  CAS  Google Scholar 

  16. Matera S, Reuter K (2009) Catal Lett 133:156–159

    Article  CAS  Google Scholar 

  17. Matera S, Reuter K (2010) Phys Rev B 82:085446

    Article  CAS  Google Scholar 

  18. Matera S, Maestri M, Cuoci A, Reuter K (2014) ACS Catal 4:4081–4092

    Article  CAS  Google Scholar 

  19. Sabbe MK, Reyniers M-F, Reuter K (2012) Catal Sci Technol 2:2010–2024

    Article  CAS  Google Scholar 

  20. Rogal J, Reuter K (2007) Ab initio atomistic thermodynamics for surfaces: a primer. In: Experiment, modeling and simulation of gas-surface interactions for reactive flows in hypersonic flights, Educational Notes RTO-EN-AVT-142, Neuilly-sur-Seine

  21. Voter AF (2007) Introduction to the kinetic Monte Carlo method. In: Sickafus KE, Kotomin EA, Uberuaga BP (eds) Radiation effects in solids. Springer, Berlin

    Google Scholar 

  22. Reuter K (2013) First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: concepts, status and frontiers. In: Deutschmann O (ed) Modelling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley, Weinhein. ISBN 3-527-32120-9

    Google Scholar 

  23. Stamatakis M, Vlachos DG (2012) ACS Catal 2:2648–2663

    Article  CAS  Google Scholar 

  24. Liu DJ, Garcia A, Wang J, Ackerman DM, Wang CJ, Evans JW (2015) Chem Rev 115:5979–6050

    Article  CAS  Google Scholar 

  25. Martin RM (2004) Electronic-structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Burke K (2012) J Chem Phys 136:150901

    Article  CAS  Google Scholar 

  27. Carter EA (2008) Science 321:800–803

    Article  CAS  Google Scholar 

  28. Feibelman PJ (2010) Top Catal 53:417–422

    Article  CAS  Google Scholar 

  29. Pacchioni G (2008) J Chem Phys 128:182505

    Article  CAS  Google Scholar 

  30. Paier J, Penschke C (2013) Sauer J 113:3949–3985

    CAS  Google Scholar 

  31. Weinert CM, Scheffler M (1986) Mater Sci Forum 10–12:25–30

    Article  Google Scholar 

  32. Kaxiras E, Bar-Yam Y, Joannopoulos JD, Pandey KC (1987) Phys Rev B 35:9625–9635

    Article  CAS  Google Scholar 

  33. Scheffler M (1987) Thermodynamic aspects of bulk and surface defects—first-principles calculations. In: Koukal J (ed) Physics of solid surfaces—1987. Elsevier, Amsterdam

    Google Scholar 

  34. Scheffler M, Dabrowski J (1988) Philos Mag A 58:107–121

    Article  CAS  Google Scholar 

  35. Qian GX, Martin RM, Chadi DJ (1988) Phys Rev B 38:7649–7663

    Article  CAS  Google Scholar 

  36. Wang XG, Weiss W, Shaikhutdinov SK, Ritter M, Petersen M, Wagner F, Schlögl R, Scheffler M (1998) Phys Rev Lett 81:1038–1041

    Article  Google Scholar 

  37. Wang XG, Chaka A, Scheffler M (2000) Phys Rev Lett 84:3650–3653

    Article  CAS  Google Scholar 

  38. Reuter K, Scheffler M (2001) Phys Rev B 65:035406

    Article  CAS  Google Scholar 

  39. Lodzianan Z, Nørskov JK, Stoltze P (2003) J Chem Phys 118:11179–11188

    Article  CAS  Google Scholar 

  40. Mc Quarrie DA (1976) Statistical mechanics. Harper and Row, New York

    Google Scholar 

  41. Reuter K, Scheffler M (2003) Phys Rev B 68:045407

    Article  CAS  Google Scholar 

  42. Stull S, Prophet H (1971) JANAF thermochemical tables, 2nd edn. U.S. National Bureau of Standards, Washington, DC

    Google Scholar 

  43. Sun Q, Reuter K, Scheffler M (2003) Phys Rev B 67:205424

    Article  CAS  Google Scholar 

  44. Sun Q, Reuter K, Scheffler M (2004) Phys Rev B 70:235402

    Article  CAS  Google Scholar 

  45. Loffreda D (2006) Surf Sci 600:2103–2112

    Article  CAS  Google Scholar 

  46. Lundgren E, Gustafson J, Mikkelsen A, Andersen JN, Stierle A, Dosch H, Todorova M, Rogal J, Reuter K, Scheffler M (2004) Phys Rev Lett 92:046101

    Article  CAS  Google Scholar 

  47. Rogal J, Reuter K, Scheffler M (2007) Phys Rev Lett 98:046101

    Article  CAS  Google Scholar 

  48. Rogal J, Reuter K, Scheffler M (2008) Phys Rev B 77:155410

    Article  CAS  Google Scholar 

  49. Zheng G, Altman EI (2002) Surf Sci 504:253–270

    Article  CAS  Google Scholar 

  50. Chang S-L, Thiel PA (1988) J Chem Phys 88:2071–2082

    Article  CAS  Google Scholar 

  51. Reuter K, Scheffler M (2004) Appl Phys A 78:793–798

    Article  CAS  Google Scholar 

  52. Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Borg M, Gustafson J, Rogal J, Reuter K, Andersen JN, Scheffler M (2003) Surf Sci 541:101–112

    Article  CAS  Google Scholar 

  53. Kostelník P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Šikola T, Varga P, Schmid M (2007) Surf Sci 601:1574–1581

    Article  CAS  Google Scholar 

  54. Gustafson J, Mikkelsen A, Borg M, Lundgren E, Köhler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quiros C, Andersen JN (2004) Phys Rev Lett 92:126102

    Article  CAS  Google Scholar 

  55. Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Phys Rev Lett 88:246103

    Article  CAS  Google Scholar 

  56. Michaelides A, Reuter K, Scheffler M (2005) J Vac Sci Technol A 23:1487–1497

    Article  CAS  Google Scholar 

  57. Ackermann MD, Pedersen TM, Hendriksen BL, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JW (2005) Phys Rev Lett 95:255505

    Article  CAS  Google Scholar 

  58. Schnadt J, Michaelides A, Knudsen J, Vang RT, Reuter K, Laegsgaard E, Scheffler M, Besenbacher F (2006) Phys Rev Lett 96:146101

    Article  CAS  Google Scholar 

  59. Miller DJ, Öberg H, Kaya S, Sanchez Casalongue H, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011) Phys Rev Lett 107:195502

    Article  CAS  Google Scholar 

  60. Hendriksen B, Bobaru S, Frenken J (2004) Surf Sci 552:229–242

    Article  CAS  Google Scholar 

  61. Shipilin M, Gustafson J, Zhang C, Merte LR, Stierle A, Hejral U, Ruett U, Gutowski O, Skoglundh M, Carlsson PA, Lundgren E (2015) J Phys Chem C 119:15469–15476

    Article  CAS  Google Scholar 

  62. Campbell CT (2006) Phys Rev Lett 96:066106

    Article  CAS  Google Scholar 

  63. Reuter K, Scheffler M (2003) Phys Rev Lett 90:046103

    Article  CAS  Google Scholar 

  64. Reuter K, Scheffler M (2006) Phys Rev B 73:045433

    Article  CAS  Google Scholar 

  65. Hendriksen B, Bobaru S, Frenken J (2005) Catal Today 105:234–243

    Article  CAS  Google Scholar 

  66. Hendriksen BLM, Ackermann MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM (2010) Nat Chem 2:730–734

    Article  CAS  Google Scholar 

  67. Fromhold AT (1976) Theory of metal oxidation, vol I and II. North-Holland, Amsterdam

    Google Scholar 

  68. Roosendahl SJ, Vredenberg AM, Habraken FHPM (2000) Phys Rev Lett 84:3366–3369

    Article  Google Scholar 

  69. Böttcher A, Niehus H, Schwegmann S, Over H, Ertl G (1997) J Phys Chem B 101:11185–11191

    Article  Google Scholar 

  70. Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Science 287:1474–1476

    Article  CAS  Google Scholar 

  71. Kaischew R (1950) Commun Bulg Acad Sci 1:100–139

    Google Scholar 

  72. Kaischew R (1951) Bull Acad Sci Bulg 2:191–204

    Google Scholar 

  73. Rogal J, Reuter K, Scheffler M (2004) Phys Rev B 69:075421

    Article  CAS  Google Scholar 

  74. Wang T, Jelic J, Rosenthal D, Reuter K (2013) Chem Cat Chem 5:3398–3403

    CAS  Google Scholar 

  75. Ouyang R, Liu JX, Li WX (2013) J Am Chem Soc 135:1760–1771

    Article  CAS  Google Scholar 

  76. Garcia-Mota M, Rieger M, Reuter K (2015) J Catal 321:1–6

    Article  CAS  Google Scholar 

  77. Gardiner CW (2003) Handbook of stochastic methods. Springer, Berlin

    Google Scholar 

  78. Froment GF (2005) Catal Rev Sci Eng 47:83–124

    Article  CAS  Google Scholar 

  79. Hoffmann MJ, Matera S, Reuter K (2014) Comput Phys Commun 185:2138–2150

    Article  CAS  Google Scholar 

  80. Hansen EW, Neurock M (1999) Chem Eng Sci 54:3411–3421

    Article  CAS  Google Scholar 

  81. Stamatakis M, Vlachos DG (2011) J Chem Phys 134:214115

    Article  CAS  Google Scholar 

  82. Temel B, Meskine H, Reuter K, Scheffler M, Metiu H (2007) J Chem Phys 126:204711

    Article  CAS  Google Scholar 

  83. Matera S, Meskine H, Reuter K (2011) J Chem Phys 134:064713

    Article  CAS  Google Scholar 

  84. Wigner E (1938) Trans Faraday Soc 34:29–41

    Article  CAS  Google Scholar 

  85. Eyring H (1938) Trans Faraday Soc 34:41–48

    Article  CAS  Google Scholar 

  86. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771

    Article  CAS  Google Scholar 

  87. Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Trevin AA (1998) The microkinetics of heterogeneous catalysis. American Chemical Society, Washington, DC

    Google Scholar 

  88. Hirvi JT, Kinnunen TJJ, Suvanto M, Pakkanen TA, Nørskov JK (2010) J Chem Phys 133:084704

    Article  CAS  Google Scholar 

  89. Stampfl C, Kreuzer HJ, Payne SH, Pfnür H, Scheffler M (1999) Phys Rev Lett 83:2993–2996

    Article  CAS  Google Scholar 

  90. Müller S (2003) J Phys 15:R1429–R1500

    Google Scholar 

  91. Zhang Y, Blum V, Reuter K (2007) Phys Rev B 75:235406

    Article  CAS  Google Scholar 

  92. Hoffmann MJ, Reuter K (2014) Top Catal 57:159–170

    Article  CAS  Google Scholar 

  93. Wu C, Schmidt D, Wolverton C, Schneider W (2012) J Catal 286:88–94

    Article  CAS  Google Scholar 

  94. Grabow LC, Hvolbaek B, Nørskov JK (2010) Top Catal 53:298–310

    Article  CAS  Google Scholar 

  95. Lausche AC, Medford AJ, Khan TS, Xu Y, Bligaard T, Abild-Pedersen F, Nørskov JK, Studt F (2013) J Catal 307:275–282

    Article  CAS  Google Scholar 

  96. Henkelman G, Jonsson H (2001) J Chem Phys 115:9657–9666

    Article  CAS  Google Scholar 

  97. Bocquet JL (2002) Defect Diffus Forum 203:81–112

    Article  Google Scholar 

  98. Trushin O, Karim A, Kara A, Rahman TS (2005) Phys Rev B 72:115401

    Article  CAS  Google Scholar 

  99. El-Mellouhi F, Mousseau N, Lewis LJ (2008) Phys Rev B 78:153202

    Article  CAS  Google Scholar 

  100. Henkelman G, Johannesson G, Jonsson H (2000) Methods for finding saddle points and minimum energy paths. In: Schwarz SD (ed) Progress on theoretical chemistry and physics. Kluwer, New York

    Google Scholar 

  101. Hratchian HP, Schlegel HB (2005) Finding minima, transition states and following reaction pathways on ab initio potential energy surfaces. In: Dykstra C, Frenking G, Kim K, Scuseria G (eds) Theory and applications in computational chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

  102. Henkelman G, Jonsson H (1999) J Chem Phys 111:7010–7022

    Article  CAS  Google Scholar 

  103. Heyden A, Bell AT, Keil FJ (2005) J Chem Phys 123:224101

    Article  CAS  Google Scholar 

  104. Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Cicotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, New Jersey

    Google Scholar 

  105. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  106. Weinan E, Ren W, Vanden-Eijnden E (2002) Phys Rev B 66:052301

    Google Scholar 

  107. Shustorovich E, Sellers H (1998) Surf Sci Rep 31:5–119

    Article  Google Scholar 

  108. Hansen E, Neurock M (1999) Surf Sci 441:410–424

    Article  CAS  Google Scholar 

  109. Maestri M, Reuter K (2011) Angew Chem Int Ed 50:1194–1197

    Article  CAS  Google Scholar 

  110. Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P (2003) J Am Chem Soc 125:3704–3705

    Article  CAS  Google Scholar 

  111. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) J Catal 197:229–231

    Article  CAS  Google Scholar 

  112. van Santen RA, Neurock M, Shetty SG (2010) Chem Rev 110:2005–2048

    Article  CAS  Google Scholar 

  113. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Proc Natl Acad Sci USA 108:937–943

    Article  Google Scholar 

  114. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  115. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–279

    Article  CAS  Google Scholar 

  116. Loffreda D, Delbecq F, Vigne F, Sautet P (2009) Angew Chem Int Ed 48:8978–8980

    Article  CAS  Google Scholar 

  117. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217

    Article  CAS  Google Scholar 

  118. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37–46

    Article  CAS  Google Scholar 

  119. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Science 279:1913–1915

    Article  CAS  Google Scholar 

  120. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) J Am Chem Soc 123:8404–8405

    Article  CAS  Google Scholar 

  121. Toulhoat H, Raybaud P (2003) J Catal 216:63–72

    Article  CAS  Google Scholar 

  122. Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493

    Article  CAS  Google Scholar 

  123. Greeley J, Mavrikakis M (2004) Nat Mater 3:810–815

    Article  CAS  Google Scholar 

  124. Andersson MP, Bligaard T, Kustov A, Larsen KE, Greeley J, Johannessen T, Chris-tensen H, Nørskov JK (2006) J Catal 239:501–506

    Article  CAS  Google Scholar 

  125. Döbler J, Sauer J (2004) Dalton Trans 19:3116–3121

    Google Scholar 

  126. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. Wiley, New York

    Google Scholar 

  127. Ziff RM, Gulari E, Barshad Y (1986) Phys Rev Lett 56:2553–2556

    Article  CAS  Google Scholar 

  128. Reuter K, Stampfl C, Ganduglia-Pirovano MV, Scheffler M (2002) Chem Phys Lett 352:311–317

    Article  CAS  Google Scholar 

  129. Reuter K, Ganduglia-Pirovano MV, Stampfl C, Scheffler M (2002) Phys Rev B 65:165403

    Article  CAS  Google Scholar 

  130. Aßmann J, Crihan D, Knapp M, Lundgren E, Löffler E, Muhler M, Narkhede V, Over H, Schmid M, Seitsonen AP, Varga P (2005) Angew Chem Int Ed 44:917–920

    Article  CAS  Google Scholar 

  131. Hoffmann MJ, Scheffler M, Reuter K (2015) ACS Catal 5:1199–1209

    Article  CAS  Google Scholar 

  132. Fernandes VR, Gustafson J, Svenum ICH, Farstad MH, Walle LE, Blomberg S, Lundgren E, Borg A (2014) Surf Sci 621:31–39

    Article  CAS  Google Scholar 

  133. Reuter K, Frenkel D, Scheffler M (2004) Phys Rev Lett 93:116105

    Article  CAS  Google Scholar 

  134. Rieger M, Rogal J, Reuter K (2008) Phys Rev Lett 100:016105

    Article  CAS  Google Scholar 

  135. Exner KS, Hess F, Over H, Seitsonen AP (2015) Surf Sci 640:165–180

    Article  CAS  Google Scholar 

  136. Boudart M, Tamaru K (1991) Catal Lett 9:15–22

    Article  CAS  Google Scholar 

  137. Campbell CT (1994) Top Catal 1:353–366

    Article  CAS  Google Scholar 

  138. Dumesic JA (1999) J Catal 185:496–505

    Article  CAS  Google Scholar 

  139. Baranski A (1999) Solid State Ion 117:123–128

    Article  CAS  Google Scholar 

  140. Stegelmann C, Andreasen A, Campbell CT (2009) J Am Chem Soc 131:13563

    Article  CAS  Google Scholar 

  141. Meskine H, Matera S, Scheffler M, Reuter K, Metiu H (2009) Surf Sci 603:1724–1730

    Article  CAS  Google Scholar 

  142. Kozuch M, Martin JML (2011) ChemPhysChem 12:1413–1418

    Article  CAS  Google Scholar 

  143. Woodruff DP, Delchar TA (1994) Modern techniques of surface science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  144. Wellendorff J, Silbaugh TL, Garcia-Pintos D, Nørskov JK, Bligaard T, Studt F, Campbell CT (2015) Surf Sci 640:36–44

    Article  CAS  Google Scholar 

  145. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  146. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413–7421

    Article  Google Scholar 

  147. Mortensen JJ, Kaasbjerg K, Frederiksen SL, Nørskov JK, Sethna JP, Jacobsen KW (2005) Phys Rev Lett 95:216401

    Article  CAS  Google Scholar 

  148. Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149

    Article  CAS  Google Scholar 

  149. Wellendorff J, Lundgaard KT, Jacobsen KW, Bligaard T (2014) J Chem Phys 140:144107

    Article  CAS  Google Scholar 

  150. Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F, Jacobsen KW, Bligaard T, Nørskov JK (2014) Science 345:197–200

    Article  CAS  Google Scholar 

  151. Blomberg S, Hoffmann MJ, Gustafson J, Martin NM, Fernandes VR, Borg A, Liu Z, Chang R, Matera S, Reuter K, Lundgren E (2013) Phys Rev Lett 110:117601

    Article  CAS  Google Scholar 

  152. Janardhanan VM, Deutschmann O (2013) Computational fluid dynamics of catalytic reactors. In: Deutschmann O (ed) Modelling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley, Weinheim. ISBN 3-527-32120-9

    Google Scholar 

  153. Matera S, Blomberg S, Hoffmann MJ, Zetterberg J, Gustafson J, Lundgren E, Reuter K (2015) ACS Catal 5:4514–4518

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am as ever indebted to my research group. Their creativity, curiosity, and enthusiasm for research is my daily motivation. Their diligence, unselfishness and idealism is the imperative to never lower the pace. I also gratefully acknowledge my temporary second home, the SUNCAT Center at Stanford University. Spending a sabbatical in this stimulating environment has been ideal to assemble the thoughts for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Reuter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuter, K. Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis. Catal Lett 146, 541–563 (2016). https://doi.org/10.1007/s10562-015-1684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1684-3

Keywords

Navigation