Skip to main content
Log in

The Role of Different Types of CuO in CuO–CeO2/Al2O3 for Total Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Different types of copper oxide in CuO–CeO2/Al2O3 were investigated structurally and catalytically. Standard preparation lead to the presence of CuO monocrystals and Ce1−xCuxO2−x as evidenced by XRD, HRTEM and EDX. Washing with nitric acid removed the monocrystals, while leaving the Ce1−xCuxO2−x solid solution. The Fourier transformed Cu K patterns for the HNO3-washed catalyst showed a diminished second Cu shell, characteristic for Ce1−xCuxO2−x as well as for X-ray amorphous nano-sized CuAl2O4 spinel phase. XANES analysis and first shell Cu fitting confirmed this CuAl2O4 like structure outside Ce1−xCuxO2−x. By modeling the Ce K EXAFS signal in the washed sample, the amount of Cu in Ce1−xCuxO2−x was determined to be 18 ± 6 %. Total oxidation of CO and C3H8 as model reactions showed little difference in activity between non-washed and washed CuO–CeO2/Al2O3, indicating that CuO monocrystals were hardly active at temperatures below 450 °C. XRD performed in situ during TPR and TPO showed that CeO2 in Ce1−xCuxO2−x added to the redox capacity of both CuO–CeO2/Al2O3 samples as it was partially reduced at 300 °C. At higher temperatures, the CuO monocrystals also participated in reaction, leading to a higher activity for the oxidation of CH4.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. van der Vaart DR, Marchand EG, Bagely-Pride A (1994) Crit Rev Environ Sci Technol 24:203

    Article  Google Scholar 

  2. Spivey JJ (1987) Ind Eng Chem Res 26:2165

    Article  CAS  Google Scholar 

  3. Everaert K, Baeyens J (2004) J Hazard Mater 109:113

    Article  CAS  Google Scholar 

  4. Delimaris D, Ioannides T (2009) Appl Catal B 89:295

    Article  CAS  Google Scholar 

  5. Heynderickx PM, Thybaut JW, Poelman H, Poelman D, Marin GB (2010) J Catal 272:109

    Article  CAS  Google Scholar 

  6. Larsson P-O, Andersson A (1998) J Catal 179:72

    Article  CAS  Google Scholar 

  7. Saqer SM, Kondarides DI, Verykios XE (2011) Appl Catal B 103:275

    Article  CAS  Google Scholar 

  8. Christopher JGI, Heyes J, Johnson HA, Moss RL (1982) J Chem Technol Biotechnol 32:1025

    Google Scholar 

  9. Larsson P-O, Andersson A (2000) Appl Catal B 24:175

    Article  CAS  Google Scholar 

  10. Rajesh H, Ozkan US (1993) Ind Eng Chem Res 32:1622

    Article  CAS  Google Scholar 

  11. Heynderickx MP, Thybaut JW, Poelman H, Poelman D, Marin GB (2010) Appl Catal B 95:26

    Article  CAS  Google Scholar 

  12. Avgouropoulos G, Ioannides T, Matralis H, Batista J, Hocevar S (2001) Catal Lett 73:33

    Article  CAS  Google Scholar 

  13. Menon U, Galvita VV, Marin GB (2011) J Catal 283:1

    Article  CAS  Google Scholar 

  14. Wang C-H (2004) Chemosphere 55:11

    Article  CAS  Google Scholar 

  15. Wang C-H, Lin S-S, Chen C-L, Weng H-S (2006) Chemosphere 64:503

    Article  CAS  Google Scholar 

  16. Tang X, Xu Y, Shen W (2008) Chem Eng J 144:175

    Article  CAS  Google Scholar 

  17. Balcaen V, Roelant R, Poelman H, Poelman D, Marin GB (2010) Catal Today 157:49

    Article  CAS  Google Scholar 

  18. Menon U, Poelman H, Bliznuk V, Galvita VV, Poelman D, Marin GB (2012) J Catal 295:91

    Article  CAS  Google Scholar 

  19. Luo J-Y, Meng M, Yao J-S, Li X-G, Zha Y-Q, Wang X, Zhang T-Y (2009) Appl Catal B 87:92

    Article  CAS  Google Scholar 

  20. van Beek W, Safonova OV, Wiker G, Emerich H (2011) Phase Transit 84:726

    Article  Google Scholar 

  21. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  22. Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE (2000) Top Catal 10:143

    Article  CAS  Google Scholar 

  23. Rehr JJ, Deleon JM, Zabinsky SI, Albers RC (1991) J Am Chem Soc 113:5135

    Article  CAS  Google Scholar 

  24. Downward L, Booth CH, Lukens WW, Bridges F (2007) In: Hedman B, Painetta P (eds) X-Ray Absorption Fine Structure-XAFS13, vol 882. Amer Inst Physics, Melville, p 129

    Google Scholar 

  25. Michalowicz A, Provost K, Laruelle S, Mimouni A, Vlaic G (1999) J Synchrotron Radiat 6:233

    Article  CAS  Google Scholar 

  26. Hamilton WC (1965) Acta Crystallogr A 18:502

    Article  CAS  Google Scholar 

  27. Bacchi A, Lamzin VS, Wilson KS (1996) Acta Crystallogr D 52:641

    Article  CAS  Google Scholar 

  28. Scherrer P, Nachr K (1918) Ges Wiss Göttingen 26:98

    Google Scholar 

  29. Mimani T (2001) J Alloy Compd 315:123

    Article  CAS  Google Scholar 

  30. Salavati-Niasari M, Davar F, Farhadi M (2009) J Sol-Gel Sci Technol 51:48

    Article  CAS  Google Scholar 

  31. Djinovic P, Batista J, Pintar A (2008) Appl Catal A 347:23

    Article  CAS  Google Scholar 

  32. Kundakovic L, Flytzani-Stephanopoulos M (1998) Appl Catal A 171:13

    Article  CAS  Google Scholar 

  33. Qin J, Lu J, Cao M, Hu C (2010) Nanoscale 2:2739

    Article  CAS  Google Scholar 

  34. Shapovalov V, Metiu H (2007) J Catal 245:205

    Article  CAS  Google Scholar 

  35. Trovarelli A, Fornasiero P (2012) Catalysis by ceria and related materials, 2nd edn. Imperial College Press, London

    Google Scholar 

  36. Pakharukova VP, Moroz EM, Kriventsov VV, Zyuzin DA, Kosmambetova GR, Strizhak PE (2009) Appl Catal A 365:159

    Article  CAS  Google Scholar 

  37. Luo M-F, Song Y-P, Lu J-Q, Wang X-Y, Pu Z-Y (2007) J Phys Chem C 111:12686

    Article  CAS  Google Scholar 

  38. Galvita V, Poelman H, Rampelberg G, Schutter B, Detavernier C, Marin G (2012) Catal Lett 142:959

    Article  CAS  Google Scholar 

  39. Zhang R, Miller JT, Baertsch CD (2012) J Catal 294:69

    Article  CAS  Google Scholar 

  40. Gamarra D, Munuera G, Hungria AB, Fernandez-Garcia M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodriguez JA, Martinez-Arias A (2007) J Phys Chem C 111:11026

    Article  CAS  Google Scholar 

  41. Yamamoto T, Tanaka T, Suzuki S, Kuma R, Teramura K, Kou Y, Funabiki T, Yoshida S (2002) Top Catal 18:113

    Article  CAS  Google Scholar 

  42. Yu-Ling W, Hsi-Chih W, Yaw-Wen Y, Jyh-Fu L (2004) J Phys 16:S3485

    Google Scholar 

  43. Hartl M, Spandl B, Wölk H-J, Behrens P, Hartl H, Schlögl R (2001) http://hasyweb.desy.de/science/annual_reports/2001_report/part1/contrib/46/5561.pdf. Accessed 23 Oct 2013

  44. Hartl M, Spandl B, Wölk H-J, Schlögl R, Hartl H, Behrens P (2000) http://hasyweb.desy.de/science/annual_reports/2000_report/part1/contrib/46/2885.pdf. Accessed 23 Oct 2013

  45. Silversmit G, Poelman H, Balcaen V, Heynderickx PM, Olea M, Nikitenko S, Bras W, Smet PF, Poelman D, De Gryse R, Reniers M-FO, Marin GB (2009) J Phys Chem Solids 70:1274

    Article  CAS  Google Scholar 

  46. Porta P, Morpurgo S, Pettiti I (1996) J Solid State Chem 121:372

    Article  Google Scholar 

  47. Wang XQ, Rodriguez JA, Hanson JC, Gamarra D, Martinez-Arias A, Fernandez-Garcia M (2005) J Phys Chem B 109:19595

    Article  CAS  Google Scholar 

  48. Wyckoff RWG (1963) Crystal structures. Interscience publishers, New York, NY

    Google Scholar 

  49. Larsson P-O, Andersson A (2000) Appl Catal B 24:175

    Article  CAS  Google Scholar 

  50. Jia A-P, Jiang S-Y, Lu J-Q, Luo M-F (2010) J Phys Chem C 114:21605

    Article  CAS  Google Scholar 

  51. Bera P, Priolkar KR, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP (2002) Chem Mater 14:3591

    Article  CAS  Google Scholar 

  52. Wan H, Li D, Dai Y, Hu Y, Zhang Y, Liu L, Zhao B, Liu B, Sun K, Dong L, Chen Y (2009) Appl Catal A 360:26

    Article  CAS  Google Scholar 

  53. Liu W, Flytzanistephanopoulos M (1995) J Catal 153:304

    Article  CAS  Google Scholar 

  54. Sedmak G, Hocevar S, Levec J (2003) J Catal 213:135

    Article  CAS  Google Scholar 

  55. Aguila G, Gracia F, Cortes J, Araya P (2008) Appl Catal B 77:325

    Article  CAS  Google Scholar 

  56. Park PW, Ledford JS (1998) Appl Catal B 15:221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP7/05 Interuniversity Attraction Poles Programme—Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE and SNBL beam lines of the ESRF and travel costs. The authors acknowledge support from G. Rampelberg with the XRD equipment, assistance from S. Nikitenko (XAS campaign 26-01-860) at DUBBLE, from O. Safonova and P. Abdala at SNBL (XAS campaigns 26-01-876 and 26-01-941) and from V. Briois for performing a test measurement on the washed CeCu-Al catalyst at SAMBA, SOLEIL synchrotron. The authors equally acknowledge support from Prof. C. Detavernier with the in situ XRD equipment (Department of Solid State Sciences, Ghent University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Galvita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvita, V.V., Filez, M., Poelman, H. et al. The Role of Different Types of CuO in CuO–CeO2/Al2O3 for Total Oxidation. Catal Lett 144, 32–43 (2014). https://doi.org/10.1007/s10562-013-1144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1144-x

Keywords

Navigation