, Volume 27, Issue 4, pp 665-677
Date: 27 Jun 2008

Combining anatomic and molecularly targeted imaging in the diagnosis and surveillance of embryonal tumors of the nervous and endocrine systems in children

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Combining anatomical and functional imaging can improve sensitivity and accuracy of tumor diagnosis and surveillance of pediatric malignancies. MRI is the state-of-the-art modality for demonstrating the anatomical location of brain tumors with contrast enhancement adding additional information regarding whether the tumor is neuronal or glial. Addition of SPECT imaging using a peptide that targets the somatostatin receptor (Octreoscan) can now differentiate medulloblastoma from a cerebellar pilocytic astrocytoma. Combined MRI and Octreoscan is now the most sensitive and accurate imaging modality for differentiating recurrent medulloblastoma from scar tissue. CT is the most common imaging modality for demonstrating the anatomical location of tumors in the chest and abdomen. Addition of SPECT imaging with either MIBG or Octreoscan has been shown to add important diagnostic information on the nature of tumors in chest and abdomen and is often more sensitive than CT for identification of metastatic lesions in bone or liver. Combined anatomical and functional imaging is particularly helpful in neuroblastoma and in neuroendocrine tumors such as gastrinoma and carcinoid. Functional imaging with MIBG and Octreoscan is predictive of response to molecularly targeted therapy with 131I-MIBG and 90Y-DOTA-tyr3-Octreotide. Dosimetry using combined anatomical and functional imaging is being developed for patient-specific dosing of targeted radiotherapy and as an extremely sensitive monitor of response to therapy. Both MIBG and Octreotide are now being adapted to PET imaging which will greatly improve the utility of PET in medulloblastoma as well as increase the sensitivity for detection of metastatic lesions in neuroblastoma and neuroendocrine tumors.