Skip to main content
Log in

Early diastolic strain rate predicts response to heart failure therapy in patients with dilated cardiomyopathy

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this prospective study was to assess the value of speckle tracking echocardiographic (2D-STE) parameters to predict response to heart failure therapy in patients with dilated cardiomyopathy (DCM). Eighty-seven patients (mean age 51 ± 13 years) with DCM, defined as ejection fraction (EF) <45 %, left ventricular (LV) end-diastolic diameter >112 % of normal range derived from age and body surface area. Based on 2D-STE following parameters were extracted from three apical views of the LV: global longitudinal strain, systolic and diastolic strain rate (SRE). Mechanical dispersion was calculated as standard deviation of time-to-peak strain values including all LV segments. After receiving heart failure therapy (mean 39 ± 11 months, range 3–60 months) 50 patients reached combined endpoint defined as following: death, heart transplantation, rehospitalization due to heart failure, and absence of improvement in EF. On stepwise multivariate regression analysis, SRE was independently of EF and LV volumes predictive for combined endpoint (OR 0.44, 95 %CI 0.27–0.70, p = 0.001) with an area under the ROC-curve (AUC) of 0.91. In patients with cQRS duration ≤120 ms mechanical dispersion was predictive for combined endpoint with the highest AUC (OR 1.53, 95 %CI 1.08–2.16, p = 0.002; AUC = 0.94). In this study, SRE, a surrogate parameter of myocardial relaxation, was able to predict a response to heart failure therapy in patients with DCM. In patients with narrow QRS complex, mechanical dispersion yielded the highest predictive value. Parameters of 2D-STE may contribute to risk stratification in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bänsch D, Antz M, Boczor S, Volkmer M, Tebbenjohanns J, Seidl K, Block M, Gietzen F, Berger J, Kuck KH (2012) Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: the cardiomyopathy trial (CAT). Europace 14(12):1740–1745. doi:10.1093/europace/eus172

    Article  Google Scholar 

  2. Cicoira M, Zanolla L, Latina L, Rossi A, Golia G, Brighetti G, Zardini P (2001) Frequency, prognosis and predictors of improvement of left ventricular function in patients with classical clinical diagnosis of idiopathic dilated cardiomyopathy. Eur J Heart Fail 3(3):323–330. doi:10.1016/S1388-9842(00)00150-1

    Article  CAS  PubMed  Google Scholar 

  3. Kaluzynski K, Chen X, Emelianov SY, Skovoroda AR, O’Donnell M (2001) Strain rate imaging using two-dimensional speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 48(4):1111–1123

    Article  CAS  PubMed  Google Scholar 

  4. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two dimensional strains-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17(10):1021–1029. doi:10.1016/j.echo.2004.06.019

    Article  PubMed  Google Scholar 

  5. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106(1):50–56. doi:10.1161/01.CIR.0000019907.77526.75

    Article  PubMed  Google Scholar 

  6. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Non-invasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793. doi:10.1016/j.jacc.2005.10.040

    Article  PubMed  Google Scholar 

  7. Henry WL, Gardin JM, Ware JH (1980) Echocardiographic measurements in normal subjects from infancy to old age. Circulation 62(5):1054–1061. doi:10.1161/01.CIR.62.5.1054

    Article  CAS  PubMed  Google Scholar 

  8. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart WJ (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7(2):79–108. doi:10.1016/j.euje.2005.12.014

    Article  PubMed  Google Scholar 

  9. Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler quantification task force of the nomenclature and standards committee of the American society of echocardiography. J Am Soc Echocardiogr 15(2):167–184. doi:10.1067/mje.2002.120202

    Article  PubMed  Google Scholar 

  10. Goebel B, Gjesdal O, Kottke D, Otto S, Jung C, Lauten A, Figulla HR, Edvardsen T, Poerner TC (2011) Detection of irregular patterns of myocardial contraction in patients with hypertensive heart disease: a two-dimensional ultrasound speckle tracking study. J Hypertens 29(11):2255–2264. doi:10.1097/HJH.0b013e32834bdd09

    Article  CAS  PubMed  Google Scholar 

  11. Haugaa KH, Smedsrud MK, Steen T, Kongsgaard E, Loennechen JP, Skjaerpe T, Voigt JU, Willems R, Smith G, Smiseth OA, Amlie JP, Edvardsen T (2010) Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging 3(3):247–256. doi:10.1016/j.jcmg.2009.11.012

    Article  PubMed  Google Scholar 

  12. Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G (2011) Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 57(13):1468–1476. doi:10.1016/j.jacc.2010.11.030

    Article  PubMed  Google Scholar 

  13. Steimle AE, Warner Stevenson L, Fonarow GC, Hamilton MA, Moriguchi JD (1994) Prediction of improvement in recent onset cardiomyopathy after referral for heart transplantation. J Am Coll Cardiol 23(3):553–559. doi:10.1016/0735-1097(94)90735-8

    Article  CAS  PubMed  Google Scholar 

  14. Prazak P, Pfisterer M, Osswald S, Buser P, Burkart F (1996) Differences of disease progression in congestive heart failure due to alcoholic as compared to idiopathic dilated cardiomyopathy. Eur Heart J 17(2):251–257

    Article  CAS  PubMed  Google Scholar 

  15. Pinamonti B, Zecchin M, Di Lenarda A, Gregori D, Sinagra G, Camerini F (1997) Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy: an ominous prognostic sign. J Am Coll Cardiol 29(3):604–612. doi:10.1016/S0735-1097(96)00539-6

    Article  CAS  PubMed  Google Scholar 

  16. Meta-analysis Research Group in Echocardiography (MeRGE) Heart Failure Collaborators (2008) Independence of restrictive filling pattern and LV ejection fraction with mortality in heart failure: an individual patient meta-analysis. Eur J Heart Fail 10(8):786–792. doi:10.1016/j.ejheart.2008.06.005

    Article  Google Scholar 

  17. Nakayama Y, Shimizu G, Hirota Y, Saito T, Kino M, Kitaura Y, Kawamura K (1987) Functional and histopathologic correlation in patients with dilated cardiomyopathy: an integrated evaluation by multivariate analysis. J Am Coll Cardiol 10(1):186–192. doi:10.1016/S0735-1097(87)80178-X

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz F, Mall G, Zebe H, Blickle J, Derks H, Manthey J, Kübler W (1983) Quantitative morphologic findings of the myocardium in idiopathic dilated cardiomyopathy. Am J Cardiol 51(3):501–506. doi:10.1016/S0002-9149(83)80088-5

    Article  CAS  PubMed  Google Scholar 

  19. Figulla HR, Rahlf G, Nieger M, Luig H, Kreuzer H (1985) Spontaneous hemodynamic improvement or stabilization and associated biopsy findings in patients with congestive cardiomyopathy. Circulation 71(6):1095–1104. doi:10.1161/01.CIR.71.6.1095

    Article  CAS  PubMed  Google Scholar 

  20. Grogan M, Redfield MM, Bailey KR, Reeder GS, Gersh BJ, Edwards WD, Rodeheffer RJ (1995) Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 26(1):80–84. doi:10.1016/0735-1097(95)00148-S

    Article  CAS  PubMed  Google Scholar 

  21. Hombach V, Merkle N, Torzewski J, Kraus JM, Kunze M, Zimmermann O, Kestler HA, Wöhrle J (2009) Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 30(16):2011–2018. doi:10.1093/eurheartj/ehp293

    Article  PubMed Central  PubMed  Google Scholar 

  22. Yokoyama I, Momomura S, Ohtake T, Yonekura K, Inoue Y, Kobayakawa N, Aoyagi T, Sugiura S, Nishikawa J, Sasaki Y, Omata M (1998) Role of positron emission tomography using fluorine-18 fluoro-2-deoxyglucose in predicting improvement in left ventricular function in patients with idiopathic dilated cardiomyopathy. Eur J Nucl Med 25(7):736–743. doi:10.1007/s002590050277

    Article  CAS  PubMed  Google Scholar 

  23. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2008) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 51(25):2414–2421. doi:10.1016/j.jacc.2008.03.018

    Article  Google Scholar 

  24. Fatkin D, Graham RM (2002) Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 82(4):945–980. doi:10.1152/physrev.00012.2002

    CAS  PubMed  Google Scholar 

  25. Knaapen P, Götte MJ, Paulus WJ, Zwanenburg JJ, Dijkmans PA, Boellaard R, Marcus JT, Twisk JW, Visser CA, van Rossum AC, Lammertsma AA, Visser FC (2006) Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study. Radiology 240(2):380–388. doi:10.1148/radiol.2402051038

    Article  PubMed  Google Scholar 

  26. Parthenakis FI, Patrianakos AP, Haritakis CN, Zacharis EA, Nyktari EG, Vardas PE (2008) NT-proBNP response to dobutamine stress echocardiography predicts left ventricular contractile reserve in dilated cardiomyopathy. Eur J Heart Fail 10(5):475–481. doi:10.1016/j.ejheart.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  27. Rigo F, Gherardi S, Galderisi M, Pratali L, Cortigiani L, Sicari R, Picano E (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27(11):1319–1323. doi:10.1093/eurheartj/ehi795

    Article  PubMed  Google Scholar 

  28. Kang SJ, Song JK, Song JM, Kang DH, Lee EY, Kim J, Nam GB, Choi KJ, Kim JJ, Kim YH (2006) Usefulness of ventricular longitudinal contractility assessed by Doppler tissue imaging in the prediction of reverse remodeling in patients with severe left ventricular systolic dysfunction. J Am Soc Echocardiogr 19(2):178–184. doi:10.1016/j.echo.2005.08.009

    Article  PubMed  Google Scholar 

  29. Tigen K, Karaahmet T, Kirma C, Dundar C, Pala S, Isiklar I, Cevik C, Kilicgedik A, Basaran Y (2010) Diffuse late gadolinium enhancement by cardiovascular magnetic resonance predicts significant intraventricular systolic dyssynchrony in patients with non-ischemic dilated cardiomyopathy. J Am Soc Echocardiogr 23(4):416–422. doi:10.1016/j.echo.2009.12.022

    Article  PubMed  Google Scholar 

  30. Leong DP, Chakrabarty A, Shipp N, Molaee P, Madsen PL, Joerg L, Sullivan T, Worthley SG, De Pasquale CG, Sanders P, Selvanayagam JB (2011) Effects of myocardial fibrosis and ventricular dyssynchrony on response to therapy in new-presentation idiopathic dilated cardiomyopathy: insights from cardiovascular magnetic resonance and echocardiography. Eur Heart J 33(5):640–648. doi:10.1093/eurheartj/ehr391

    Article  PubMed  Google Scholar 

  31. Park HE, Chang SA, Kim HK, Shin DH, Kim JH, Seo MK, Kim YJ, Cho GY, Sohn DW, Oh BH, Park YB (2010) Impact of loading condition on the 2D speckle tracking-derived left ventricular dyssynchrony index in nonischemic dilated cardiomyopathy. Circ Cardiovasc Imaging 3(3):272–281. doi:10.1161/CIRCIMAGING.109.890848

    Article  PubMed  Google Scholar 

  32. Jasaityte R, Dandel M, Lehmkuhl H, Hetzer R (2009) Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging. Transplant Proc 41(1):277–280. doi:10.1016/j.transproceed.2008.10.083

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Goebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goebel, B., Haugaa, K.H., Meyer, K. et al. Early diastolic strain rate predicts response to heart failure therapy in patients with dilated cardiomyopathy. Int J Cardiovasc Imaging 30, 505–513 (2014). https://doi.org/10.1007/s10554-014-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0361-8

Keywords

Navigation