Skip to main content

Advertisement

Log in

Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Sorcin, a 22-kDa calcium-binding protein, renders cancer cells resistant to chemotherapeutic agents, thus playing an important role in multidrug resistance. As there is a clear association between drug resistance and an aggressive phenotype, we asked whether sorcin affects also the motility, invasion, and stem cell characteristics of cancer cells. We have used both RNA interference (transient and stable expression of hairpins) and a lentiviral expression vector to experimentally modulate sorcin expression in a variety of cells. We demonstrate that sorcin depletion in MDA-MB-231 breast cancer cells reduces the pool of CD44+/CD24 and ALDH1high cancer stem cells (CSCs) as well as mammosphere-forming capacity. We also observe that sorcin regulates epithelial-mesenchymal transition and CSCs partly through E-cadherin and vascular endothelial growth factor expression. This leads to the acquisition of an epithelial-like phenotype, attenuating epithelial-mesenchymal transition and suppression of metastases in nude mice. The sorcin-depleted phenotype can also be reproduced in lung adenocarcinoma A549 cells and lung fibrosarcoma HT1080 cells. In addition, overexpression of sorcin in MCF7 cells, which have low endogenous sorcin expression levels, increases their migration and invasion in vitro. This offers the rationale for the development of therapeutic strategies down-regulating sorcin expression for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. doi:10.1073/pnas.05302911000530291100

    Article  CAS  PubMed  Google Scholar 

  2. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi:10.1016/j.cell.2008.03.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323. doi:10.1016/j.stem.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  4. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70(17):6945–6956. doi:10.1158/0008-5472.CAN-10-0785

    Article  CAS  PubMed  Google Scholar 

  5. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284. doi:10.1038/nrc1590

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Feng M, Zheng G, Chen Y, Wang X, Pen B, Yin J, Yu Y, He Z (2012) Chemoresistance to 5-fluorouracil induces epithelial-mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells. Biochem Biophys Res Commun 417(2):679–685. doi:10.1016/j.bbrc.2011.11.142

    Article  CAS  PubMed  Google Scholar 

  7. Saxena M, Stephens MA, Pathak H, Rangarajan A (2011) Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2:e179. doi:10.1038/cddis.2011.61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12:91. doi:10.1186/1471-2407-12-91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhu K, Chen L, Han X, Wang J, Wang J (2012) Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells. Oncol Rep 27(4):1027–1034

    CAS  PubMed  Google Scholar 

  10. Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI (1995) Association of sorcin with the cardiac ryanodine receptor. J Biol Chem 270(44):26411–26418

    Article  CAS  PubMed  Google Scholar 

  11. Deng L, Su T, Leng A, Zhang X, Xu M, Yan L, Gu H, Zhang G (2010) Upregulation of soluble resistance-related calcium-binding protein (sorcin) in gastric cancer. Med Oncol 27(4):1102–1108. doi:10.1007/s12032-009-9342-5

    Article  CAS  PubMed  Google Scholar 

  12. Yokota T, Kouno J, Adachi K, Takahashi H, Teramoto A, Matsumoto K, Sugisaki Y, Onda M, Tsunoda T (2006) Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, alpha-PIX and sorcin. Acta Neuropathol 111(1):29–38. doi:10.1007/s00401-005-1085-6

    Article  CAS  PubMed  Google Scholar 

  13. Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M, Brors B, Pechtel S, Bork S, Koch A, Baer A, Rohr UP, Kobbe G, von Haeseler A, Gattermann N, Haas R, Kronenwett R (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21(3):494–504 10.1038/sj.leu.2404549

    Article  CAS  PubMed  Google Scholar 

  14. Tan Y, Li G, Zhao C, Wang J, Zhao H, Xue Y, Han M, Yang C (2003) Expression of sorcin predicts poor outcome in acute myeloid leukemia. Leuk Res 27(2):125–131

    Article  CAS  PubMed  Google Scholar 

  15. Landriscina M, Laudiero G, Maddalena F, Amoroso MR, Piscazzi A, Cozzolino F, Monti M, Garbi C, Fersini A, Pucci P, Esposito F (2010) Mitochondrial chaperone Trap1 and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents. Cancer Res 70(16):6577–6586. doi:10.1158/0008-5472.CAN-10-1256

    Article  CAS  PubMed  Google Scholar 

  16. Parekh HK, Deng HB, Choudhary K, Houser SR, Simpkins H (2002) Overexpression of sorcin, a calcium-binding protein, induces a low level of paclitaxel resistance in human ovarian and breast cancer cells. Biochem Pharmacol 63(6):1149–1158

    Article  CAS  PubMed  Google Scholar 

  17. Qu Y, Yang Y, Liu B, Xiao W (2010) Comparative proteomic profiling identified sorcin being associated with gemcitabine resistance in non-small cell lung cancer. Med Oncol 27(4):1303–1308. doi:10.1007/s12032-009-9379-5

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Y, Xu Y, Tan Y, Qi J, Xiao Y, Yang C, Zhu Z, Xiong D (2006) Sorcin, an important gene associated with multidrug-resistance in human leukemia cells. Leuk Res 30(4):469–476. doi:10.1016/j.leukres.2005.08.024

    Article  CAS  PubMed  Google Scholar 

  19. Yague E, Armesilla AL, Harrison G, Elliott J, Sardini A, Higgins CF, Raguz S (2003) P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem 278(12):10344–10352. doi:10.1074/jbc.M211093200

    Article  PubMed  Google Scholar 

  20. Su Y, Cheng X, Tan Y, Hu Y, Zhou Y, Liu J, Xu Y, Xie Y, Wang C, Gao Y, Wang J, Cheng T, Yang C, Xiong D, Miao H (2012) Synthesis of a dual functional anti-MDR tumor agent PH II-7 with elucidations of anti-tumor effects and mechanisms. PLoS One 7(3):e32782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lombardo Y, Filipovic A, Molyneux G, Periyasamy M, Giamas G, Hu Y, Trivedi PS, Wang J, Yague E, Michel L, Coombes RC (2012) Nicastrin regulates breast cancer stem cell properties and tumor growth in vitro and in vivo. Proc Natl Acad Sci USA 109(41):16558–16563. doi:10.1073/pnas.1206268109

    Article  CAS  PubMed  Google Scholar 

  22. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Charafe-Jauffret E, Ginestier C, Birnbaum D (2009) Breast cancer stem cells: tools and models to rely on. BMC Cancer 9:202. doi:10.1186/1471-2407-9-202

    Article  PubMed Central  PubMed  Google Scholar 

  24. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  25. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751. doi:10.1038/onc.2010.215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of atp-dependent transporters. Nat Rev Cancer 2:48–58

    Article  CAS  PubMed  Google Scholar 

  27. Kakarala M, Wicha MS (2007) Cancer stem cells: implications for cancer treatment and prevention. Cancer J 13(5):271–275. doi:10.1097/PPO.0b013e318156da4e

    Article  CAS  PubMed  Google Scholar 

  28. Bastid J (2012) EMT in carcinoma progression and dissemination: facts, unanswered questions, and clinical considerations. Cancer Metastasis Rev 31(1–2):277–283. doi:10.1007/s10555-011-9344-6

    Article  PubMed  Google Scholar 

  29. Ksiazkiewicz M, Markiewicz A, Zaczek AJ (2012) Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 79(4):195–208. doi:10.1159/000337106

    Article  PubMed  Google Scholar 

  30. Zheng BB, Zhang P, Jia WW, Yu LG, Guo XL (2012) Sorcin, a potential therapeutic target for reversing multidrug resistance in cancer. J Physiol Biochem 68(2):281–287

    Article  PubMed  Google Scholar 

  31. Maddalena F, Laudiero G, Piscazzi A, Secondo A, Scorziello A, Lombardi V, Matassa DS, Fersini A, Neri V, Esposito F, Landriscina M (2011) Sorcin induces a drug-resistant phenotype in human colorectal cancer by modulating Ca(2+) homeostasis. Cancer Res 71(24):7659–7669. doi:10.1158/0008-5472.CAN-11-2172

    Article  CAS  PubMed  Google Scholar 

  32. Qi J, Liu N, Zhou Y, Tan Y, Cheng Y, Yang C, Zhu Z, Xiong D (2006) Overexpression of sorcin in multidrug resistant human leukemia cells and its role in regulating cell apoptosis. Biochem Biophys Res Commun 349(1):303–309. doi:10.1016/j.bbrc.2006.08.042

    Article  CAS  PubMed  Google Scholar 

  33. Farrell EF, Antaramian A, Rueda A, Gomez AM, Valdivia HH (2003) Sorcin inhibits calcium release and modulates excitation-contraction coupling in the heart. J Biol Chem 278(36):34660–34666. doi:10.1074/jbc.M305931200

    Article  CAS  PubMed  Google Scholar 

  34. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408. doi:10.1152/physrev.00004.2005

    Article  CAS  PubMed  Google Scholar 

  35. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26(5):711–724

    Article  CAS  PubMed  Google Scholar 

  36. Hoshino H, Miyoshi N, Nagai K, Tomimaru Y, Nagano H, Sekimoto M, Doki Y, Mori M, Ishii H (2009) Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem Biophys Res Commun 390(3):1061–1065. doi:10.1016/j.bbrc.2009.10.117

    Article  CAS  PubMed  Google Scholar 

  37. Rosano L, Cianfrocca R, Spinella F, Di Castro V, Nicotra MR, Lucidi A, Ferrandina G, Natali PG, Bagnato A (2011) Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res 17(8):2350–2360. doi:10.1158/1078-0432.CCR-10-2325-0432.CCR-10-2325

    Article  CAS  PubMed  Google Scholar 

  38. Davis FM, Kenny PA, Soo ET, van Denderen BJ, Thompson EW, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GR (2011) Remodeling of purinergic receptor-mediated Ca2+ signaling as a consequence of EGF-induced epithelial-mesenchymal transition in breast cancer cells. PLoS One 6(8):e23464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, Xiang R, Tan X (2011) Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun 411(4):786–791

    Article  CAS  PubMed  Google Scholar 

  40. Chen J, Wang M, Xi B, Xue J, He D, Zhang J, Zhao Y (2012) SPARC is a key regulator of proliferation, apoptosis and invasion in human ovarian cancer. PLoS One 7(8):e42413. doi:10.1371/journal.pone.0042413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L, Barraclough R (2000) Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res 60(6):1595–1603

    CAS  PubMed  Google Scholar 

  42. Wang G, Platt-Higgins A, Carroll J, de Rudland Silva S, Winstanley J, Barraclough R, Rudland PS (2006) Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer Res 66(2):1199–1207

    Article  CAS  PubMed  Google Scholar 

  43. Chen M, Bresnick AR, O’Connor KL (2012) Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene. doi:10.1038/onc.2012.383

    Google Scholar 

  44. Chen H, Yuan Y, Zhang C, Luo A, Ding F, Ma J, Yang S, Tian Y, Tong T, Zhan Q, Liu Z (2012) Involvement of S100A14 protein in cell invasion by affecting expression and function of matrix metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation. J Biol Chem 287(21):17109–17119

    Article  CAS  PubMed  Google Scholar 

  45. Lu D, Chen S, Tan X, Li N, Liu C, Li Z, Liu Z, Stupack DG, Reisfeld RA, Xiang R (2012) Fra-1 promotes breast cancer chemosensitivity by driving cancer stem cells from dormancy. Cancer Res 72(14):3451–3456

    Article  CAS  PubMed  Google Scholar 

  46. Sajithlal GB, Rothermund K, Zhang F, Dabbs DJ, Latimer JJ, Grant SG, Prochownik EV (2010) Permanently blocked stem cells derived from breast cancer cell lines. Stem Cells 28(6):1008–1018. doi:10.1002/stem.424

    Article  PubMed  Google Scholar 

  47. Ling H, Sylvestre JR, Jolicoeur P (2010) Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 29(32):4543–4554

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  49. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12(17):5018–5022

    Article  CAS  PubMed  Google Scholar 

  50. Patton AM, Kassis J, Doong H, Kohn EC (2003) Calcium as a molecular target in angiogenesis. Curr Pharm Des 9(7):543–551

    Article  CAS  PubMed  Google Scholar 

  51. Lodola F, Laforenza U, Bonetti E, Lim D, Dragoni S, Bottino C, Ong HL, Guerra G, Ganini C, Massa M, Manzoni M, Ambudkar IS, Genazzani AA, Rosti V, Pedrazzoli P, Tanzi F, Moccia F, Porta C (2012) Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One 7(9):e42541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22(5–6):396–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

YH acknowledges support from the China Scholarship Council to visit Imperial College London. We thank S. Raguz (Medical Research Council, UK) for her advice on lentiviral expression. This work was supported by Grants from Natural Science Foundation of China (Grant numbers 30873091, 30971291, and 81170512); Natural Science Foundation of Tianjin (Grant number. 05YFGZGX02800); and National Science and Technology Major Project (Grant number 2012ZX09102301-015).

Conflict of interest

The authors declare no conflict of interest. The experiments described in the manuscript comply with the current laws of the countries in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernesto Yagüe or Dongsheng Xiong.

Additional information

Yunhui Hu and Shuangjing Li contributed equally to this work.

Senior corresponding authors, Ernesto Yagüe and Dongsheng Xiong contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Li, S., Yang, M. et al. Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat 143, 287–299 (2014). https://doi.org/10.1007/s10549-013-2809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2809-2

Keywords

Navigation