Skip to main content

Advertisement

Log in

IL-15 and IL-2 increase Cetuximab-mediated cellular cytotoxicity against triple negative breast cancer cell lines expressing EGFR

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Triple negative breast cancer (TNBC) patients are not likely to benefit from anti-estrogen or anti-HER2 therapy and this phenotype is associated with a more aggressive clinical course and worse clinical outcome. Taking into account the limited treatment possibilities in TNBC, the aim of the present work was to study a potential therapy based on Cetuximab-mediated immune activity by natural killer (NK) cells. We performed in vitro studies on human breast cancer (BC) cell lines, IIB-BR-G, and the in vivo metastatic variant IIB-BR-G MT. The immunohistochemical analysis showed a TNBC phenotype with high but different levels of EGFR expression on each cell line, measured by flow cytometry. DNA sequencing showed that both cell lines have a mutated K-RAS status, 38 G > A at codon 13. Consequently, Cetuximab did not inhibit cellular proliferation or induce apoptosis. We investigated if Cetuximab could trigger immune mechanisms, and we determined that both cell lines treated with 1 μg/ml Cetuximab were susceptible to antibody dependent cellular cytotoxicity (ADCC), mediated by peripheral blood mononuclear cells (PBMC). At 50:1 effector:target ratio, lytic activity was 34 ± 2% against IIB-BR-G and 27 ± 6% against IIB-BR-G MT cells. PBMC pretreatment with IL-2 allowed reaching 65 ± 3% of Cetuximab-mediated ADCC against IIB-BR-G and 63 ± 6.5% against IIB-BR-G MT. Furthermore, IL-15 pretreatment increased the ADCC up to 71 ± 3% in IIB-BR-G and 79 ± 3.5% in IIB-BR-G MT. We suggest that NK cells are the effectors present in PBMC since they were able to induce ADCC at lower effector:target ratios. Besides, IL-2- and mainly IL-15-induced upregulation of NK activating receptors CD16 and NKG2D and enhanced IFN-γ production. EGFR-expressing TNBC could be killed by Cetuximab-mediated ADCC at clinically achievable concentrations. IL-15 could advantageously replace IL-2 in most of its immunologic activities, stimulating the ability to produce IFN-γ, and paralleling the up-regulation of activating receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tavassoli F, Deville P (2003) World Health Organization: tumours of the breast and female genital organs (2003) (Who/IARC Classifications of Tumours). IARC, Lyon

    Google Scholar 

  2. Sorlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40:2667–2675

    Article  PubMed  CAS  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lønning P, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  5. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281

    Article  PubMed  Google Scholar 

  6. Ciardiello F, Tortora G (2008) eGFr antagonists in cancer treatment. N Eng J Med 358:1160–1174

    Article  CAS  Google Scholar 

  7. Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6:519–527

    Article  PubMed  CAS  Google Scholar 

  8. Van Cutsem E, Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D’Haens G, Pintér T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  9. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, McAllister PK, Morton RF, Schilsky RL (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–2096

    Article  PubMed  Google Scholar 

  10. Fan Z, Masui H, Altas I, Mendelsohn J (1993) Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 53:4322–4328

    PubMed  CAS  Google Scholar 

  11. Kimura H, Sakai K, Arao T, Shimoyama T, Tamura T, Nishio K (2007) Antibody-dependent cellular cytotoxicity of Cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci 98:1275–1280

    Article  PubMed  CAS  Google Scholar 

  12. Kurai J, Chikumi H, Hashimoto K, Yamaguchi K, Yamasaki A, Sako T, Touge H, Makino H, Takata M, Miyata M, Nakamoto M, Burioka N, Shimizu E (2007) Antibody-dependent cellular cytotoxicity mediated by Cetuximab against lung cancer cell lines. Clin Cancer Res 13:1552–1561

    Article  PubMed  CAS  Google Scholar 

  13. Roda JM, Joshi T, Butchar JP, McAlees JW, Lehman A, Tridandapani S, Carson WE 3rd (2007) The activation of natural killer cell effector functions by Cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 13:6419–6428

    Article  PubMed  CAS  Google Scholar 

  14. Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider-Merck T, Lammerts van Bueren JJ, Bleeker WK, Parren PW, van de Winkel JG, Valerius T (2008) Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res 68:4998–5003

    Article  PubMed  CAS  Google Scholar 

  15. Levy EM, Sycz G, Arriaga JM, Barrio MM, von Euw EM, Morales SB, González M, Mordoh J, Bianchini M (2009) Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells. Innate Immun 15:91–100

    Article  PubMed  CAS  Google Scholar 

  16. Correale P, Marra M, Remondo C, Migali C, Misso G, Arcuri FP, Del Vecchio MT, Carducci A, Loiacono L, Tassone P, Abbruzzese A, Tagliaferri P, Caraglia M (2010) Cytotoxic drugs up-regulate epidermal growth factor receptor (EGFR) expression in colon cancer cells and enhance their susceptibility to EGFR-targeted antibody-dependent cell-mediated-cytotoxicity (ADCC). Eur J Cancer 9:1703–1711

    Article  Google Scholar 

  17. Leibson PJ (1997) Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 6:655–661

    Article  PubMed  CAS  Google Scholar 

  18. Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N (2008) Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol 27:93–110

    Article  PubMed  CAS  Google Scholar 

  19. Anfossi N, André P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagné F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342

    Article  PubMed  CAS  Google Scholar 

  20. Pagès F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27:5944–5951

    Article  PubMed  Google Scholar 

  21. Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G (2008) Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(-) cells and display an impaired capability to kill tumor cells. Cancer 112:863–875

    Article  PubMed  Google Scholar 

  22. Wulff S, Pries R, Börngen K, Trenkle T, Wollenberg B (2009) Decreased levels of circulating regulatory NK cells in patients with head and neck cancer throughout all tumor stages. Anticancer Res 29:3053–3057

    PubMed  Google Scholar 

  23. Watanabe M, Kono K, Kawaguchi Y, Mizukami Y, Mimura K, Maruyama T, Fujii H (2010) Interleukin-21 can efficiently restore impaired antibody-dependent cell-mediated cytotoxicity in patients with oesophageal squamous cell carcinoma. Br J Cancer 102:520–529

    Article  PubMed  CAS  Google Scholar 

  24. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69:4010–4017

    Article  PubMed  CAS  Google Scholar 

  25. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166

    Article  PubMed  CAS  Google Scholar 

  26. Oberlies J, Watzl C, Giese T, Luckner C, Kropf P, Müller I, Ho AD, Munder M (2009) Regulation of NK cell function by human granulocyte arginase. J Immunol 182:5259–5267

    Article  PubMed  CAS  Google Scholar 

  27. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF, Croce CM, Baumann H, Caligiuri MA (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99:937–943

    Article  PubMed  CAS  Google Scholar 

  28. Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y, Aguila HL, Caligiuri MA (2002) In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100:3633–3638

    Article  PubMed  CAS  Google Scholar 

  29. Boyiadzis M, Memon S, Carson J, Allen K, Szczepanski MJ, Vance BA, Dean R, Bishop MR, Gress RE, Hakim FT (2008) Upregulation of NK cell activating receptors following allogeneic hematopoietic stem cell transplantation under a lymphodepleting reduced intensity regimen is associated with elevated IL-15 levels. Biol Blood Marrow Transplant 14:290–300

    Article  PubMed  CAS  Google Scholar 

  30. Corkery B, Crown J, Clynes M, O’Donovan N (2009) Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 20:862–867

    Article  PubMed  CAS  Google Scholar 

  31. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  PubMed  CAS  Google Scholar 

  32. Gholam D, Chebib A, Hauteville D, Bralet MP, Jasmin C (2007) Combined paclitaxel and cetuximab achieved a major response on the skin metastases of a patient with epidermal growth factor receptor-positive, estrogen receptor-negative, progesterone receptor-negative and human epidermal growth factor receptor-2-negative (triple-negative) breast cancer. Anticancer Drugs 18:835–837

    Article  PubMed  CAS  Google Scholar 

  33. Bover L, Barrio M, Slavutsky I, Bravo AI, Quintans C, Bagnăti A, Lema B, Schiaffi J, Yomha R, Mordoh J (1991) Description of a new human breast cancer cell line, IIB-BR-G, established from a primary undifferentiated tumor. Breast Cancer Res Treat 19:47–56

    Article  PubMed  CAS  Google Scholar 

  34. Bover L, Barrio M, Bravo AI, Slavutsky I, Larripa I, Bolondi A, Ayala M, Mordoh J (1998) The human breast cancer cell line IIB-BR-G has amplified c-myc and c-fos oncogenes in vitro and is spontaneously metastatic in vivo. Cell Mol Biol (Noisy-le-grand) 44:493–504

    CAS  Google Scholar 

  35. Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Côté JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Clin Cancer Res 66:3992–3995

    Google Scholar 

  36. Mukohara T, Engelman JA, Hanna NH, Yeap BY, Kobayashi S, Lindeman N, Halmos B, Pearlberg J, Tsuchihashi Z, Cantley LC, Tenen DG, Johnson BE, Jänne PA (2005) Differential effects of gefitinib and cetuximab on non-smallcell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst 97:1185–1194

    Article  PubMed  CAS  Google Scholar 

  37. Luo FR, Yang Z, Dong H, Camuso A, McGlinchey K, Fager K, Flefleh C, Kan D, Inigo I, Castaneda S, Rose WC, Kramer RA, Wild R, Lee FY (2005) Correlation of pharmacokinetics with the antitumor activity of cetuximab in nude mice bearing theGEOhuman colon carcinoma xenograft. Cancer Chemother Pharmacol 56:455–464

    Article  PubMed  CAS  Google Scholar 

  38. Khan KD, Emmanouilides C, Benson DM Jr, Hurst D, Garcia P, Michelson G, Milan S, Ferketich AK, Piro L, Leonard JP, Porcu P, Eisenbeis CF, Banks AL, Chen L, Byrd JC, Caligiuri MA (2006) A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin’s lymphoma. Clin Cancer Res 12:7046–7053

    Article  PubMed  CAS  Google Scholar 

  39. Alpaugh RK, von Mehren M, Palazzo I, Atkins MB, Sparano JA, Schuchter L, Weiner LM, Dutcher JP (1998) Phase Ib trial for malignant melanoma using R24 monoclonal antibody, interleukin-2/α-interferon. Med Oncol 15:191–198

    Article  PubMed  CAS  Google Scholar 

  40. Golay J, Manganini M, Facchinetti V, Gramigna R, Broady R, Borleri G, Rambaldi A, Introna M (2003) Rituximab-mediated antibody-dependent cellular cytotoxicity against neoplastic B cells is stimulated strongly by interleukin-2. Haematologica 88:1002–1012

    PubMed  CAS  Google Scholar 

  41. Carson WE, Parihar R, Lindemann MJ, Personeni N, Dierksheide J, Meropol NJ, Baselga J, Caligiuri MA (2001) Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. EurJ Immunol 31:3016–3025

    Article  CAS  Google Scholar 

  42. Budagian V, Bulanova E, Paus R, Bulfone-Paus S (2006) IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 17:259–280

    Article  PubMed  CAS  Google Scholar 

  43. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110

    PubMed  CAS  Google Scholar 

  44. Becknell B, Caligiuri MA (2005) Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 86:209–239

    Article  PubMed  CAS  Google Scholar 

  45. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Muller W, Di Santo JP (2003) IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101:4887–4893

    Article  PubMed  CAS  Google Scholar 

  46. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF, Croce CM, Baumann H, Caligiuri MA (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99:937–943

    Article  PubMed  CAS  Google Scholar 

  47. Chin YE, Kitagawa M, Kuida K, Flavell RA, Fu XY (1997) Activation of the STAT signaling pathway can cause expression of caspase 1and apoptosis. Mol Cell Biol 17:5328–5337

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported with funds from Fundación Sales, Fundación P. Mosoteguy, Fundación Cáncer (FUCA), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Fundación María Calderón de la Barca. M. Bianchini, M.M. Barrio, J. Mordoh, and E.M. Levy are members of CONICET. We are grateful to Dr. Norberto W. Zwirner for kindly providing us IL-15 and Biochemist Fernanda Reynoso for performing PCR for K-RAS analysis and to Ms. María Luisa Poljak for revising this manuscript. We also thank the Servicio de Hemoterapia del Instituto Médico Especializado A. Fleming for providing healthy donors blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Levy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 14180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberti, M.P., Barrio, M.M., Bravo, A.I. et al. IL-15 and IL-2 increase Cetuximab-mediated cellular cytotoxicity against triple negative breast cancer cell lines expressing EGFR. Breast Cancer Res Treat 130, 465–475 (2011). https://doi.org/10.1007/s10549-011-1360-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1360-2

Keywords

Navigation