Skip to main content

Advertisement

Log in

Altered expression of anti-apoptotic proteins in non-involved tissue from cancer-containing breasts

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In a previous investigation reduced apoptosis was identified in normal breast tissue from cancer-containing breasts away from the cancer in comparison to age-matched normal breast from women without cancer. The hypothesis for this study was that defects in expression of apoptotic regulatory and DNA repair proteins would facilitate persistence of genetic alterations and predispose to breast cancer development. Using immunohistochemistry normal breast from 120 age-matched women (58 with breast cancer, 62 without) was analysed for proliferation, apoptosis, bcl2, BAX, caspase 3, Hsp27, Hsp70, BRCA1, ATM and BARD1. All assessments were performed without knowledge as to whether it was a cancer case or control. A significant difference was found for apoptotic index which was higher in controls (P < 0.02). There was no change in apoptotic and proliferation index with age for cancer cases unlike controls. Higher expression of bcl2 (P = 0.001) and Hsp27 (P = 0.001) was found in normal breast from cancer-containing breast in comparison to controls. There were no differences in the other proteins. Apoptosis has been found to be reduced in normal breast in a separate cohort of women with breast cancer, along with increased expression of the anti-apoptotic proteins bcl2 and Hsp27. These alterations in apoptotic regulation would enhance tumour development. Further studies are needed to examine the value of these proteins as risk markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Simpson PT, Reis-Filho JS, Gale T et al (2005) Molecular evolution of breast cancer. J Pathol 205:248–254

    Article  PubMed  CAS  Google Scholar 

  2. Foote FW, Stewart FW (1945) Comparative studies of cancerous versus noncancerous breasts. Ann Surg 121:197–222

    PubMed  CAS  Google Scholar 

  3. Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to precancerous lesions. J Natl Cancer Inst 55:231–273

    PubMed  CAS  Google Scholar 

  4. Alpers CE, Wellings SR (1985) The prevalence of carcinoma in situ in normal and cancer associated breasts. Hum Pathol 16:796–807

    Article  PubMed  CAS  Google Scholar 

  5. Page DL, Vander Zwaag R, Rogers LW et al (1978) Relation between component parts of fibrocystic disease complex and breast cancer. J Natl Cancer Inst 61:1055–1063

    PubMed  CAS  Google Scholar 

  6. Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative disease. New Eng J Med 312:146–151

    Article  PubMed  CAS  Google Scholar 

  7. Page DL, Dupont WD (1990) Anatomic markers of human premalignancy and risk of breast cancer. Cancer 66:1326–1335

    Article  PubMed  CAS  Google Scholar 

  8. Tavassoli FA, Norris AJ (1990) A comparison of the results of long-term follow-up for atypical ductal hyperplasia and intraduct hyperplasia of the breast. Cancer 65:518–529

    Article  PubMed  CAS  Google Scholar 

  9. McDivitt RW, Stevens JA, Lee NC et al (1992) Histologic types of benign breast disease and the risk of breast cancer. Lancet 69:1408–1414

    CAS  Google Scholar 

  10. London SJ, Connolly JL, Schnitt SJ et al (1992) A prospective study of benign breast disease and the risk of breast cancer. J Am Med Assoc 267:941–944

    Article  CAS  Google Scholar 

  11. Wang J, Constantino JP, Tan-Chin E et al (2004) Lower category benign breast disease and the risk of invasive breast cancer. J Natl Cancer Inst 96:616–620

    Article  PubMed  Google Scholar 

  12. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerisation in oral stratified squamous epithelium: clinical implications of multicentric origin. Cancer 6:963–968

    Article  PubMed  CAS  Google Scholar 

  13. Braakhuis BJM, Tabor MP, Kummer JA et al (2003) A genetic explanation of Slaughter’s concept of field cancerisation: evidence and clinical implications. Cancer Res 63:1727–1730

    PubMed  CAS  Google Scholar 

  14. Deng G, Lu Y, Zlotnikov G et al (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059

    Article  PubMed  CAS  Google Scholar 

  15. Larson PS, de las Morenas A, Cupples LA (1998) Genetically abnormal clones in histologically normal breast tissue. Am J Pathol 152:1591–1598

    PubMed  CAS  Google Scholar 

  16. Lakhani SR, Chaggar R, Davies S et al (1999) Genetic alterations in ‘normal’ luminal and myoepithelial cells of the breast. J Pathol 189:496–503

    Article  PubMed  CAS  Google Scholar 

  17. Larson PS, de las Morenas A, Bennett SR et al (2002) Loss of heterozygosity or allele imbalance in histologically normal breast epithelium is distinct from loss of heterozygosity or allele imbalance in co-existing carcinomas. Am J Pathol 161:283–290

    PubMed  Google Scholar 

  18. Tlsty TD, Crawford YG, Holst CR et al (2004) Genetic and epigenetic changes in mammary epithelial cells may mimic early events in carcinogenesis. J Mammary Gland Biol Neoplasia 9:263–274

    Article  PubMed  Google Scholar 

  19. Ellsworth DL, Ellsworth RE, Liebman MN et al (2004) Genomic instability in histologically normal breast tissues: implications for carcinogenesis. Lancet Oncol 5:753–758

    Article  PubMed  CAS  Google Scholar 

  20. Larson PS, Schlecter BL, de las Morenas et al (2005) Allele imbalance, or loss of heterozygosity, in normal breast epithelium of sporadic breast cancer cases and BRCA1 gene mutation carriers is increased compared with reduction mammoplasty tissues. J Clin Oncol 23:8613–8619

    Article  PubMed  CAS  Google Scholar 

  21. Walker RA, Cowl J, Dhadly PPS et al (1992) Oestrogen receptor, epidermal growth factor receptor and oncoprotein expression in non-involved tissue of cancerous breasts. Breast 2:87–91

    Article  Google Scholar 

  22. Jones JL, Critchley DR, Walker RA (1992) Alteration of integrin and stromal protein expression—a marker of pre-malignant change? J Pathol 167:399–406

    Article  PubMed  CAS  Google Scholar 

  23. Hassan HI, Walker RA (2001) Altered expression of epidermal growth factor receptor in non-involved tissue of cancer-containing breasts. Breast 10:318–324

    Article  PubMed  CAS  Google Scholar 

  24. Hassan HI, Walker RA (1998) Decreased apoptosis in non-involved tissue from cancer-containing breasts. J Pathology 184:258–264

    Article  CAS  Google Scholar 

  25. Allan DJ, Howell A, Roberts SA et al (1992) Reduction in apoptosis relative to mitosis in histologically normal epithelium accompanies fibrocystic change and carcinoma of the premenopausal human breast. J Pathol 167:25–32

    Article  PubMed  CAS  Google Scholar 

  26. Clarke RB, Howell A, Potten CS et al (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    PubMed  CAS  Google Scholar 

  27. Shoker BS, Jarvis C, Clarke RB et al (1999) Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol 155:1811–1815

    PubMed  CAS  Google Scholar 

  28. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    Article  PubMed  CAS  Google Scholar 

  29. Schorr K, Li M, Bar-Peled U et al (1999) Gain of Bcl-2 is more potent than BAX loss in regulating mammary epithelial cell survival in vivo. Cancer Res 59:2541–2545

    PubMed  CAS  Google Scholar 

  30. Sabourin JC, Martin A, Baruch J et al (1994) Bcl-2 expression in normal breast during the menstrual cycle. Int J Cancer 59:1–6

    Article  PubMed  CAS  Google Scholar 

  31. Gompel A, Somai S, Chaout M et al (2000) Hormonal regulation of apoptosis in breast cells and tissues. Steroids 65:593–598

    Article  PubMed  CAS  Google Scholar 

  32. Gee JM, Robertson JFR, Ellis IO et al (1994) Immunocytochemical localization of bcl-2 protein in human breast cancers and its relationship to a series of prognostic markers and response to endocrine therapy. Int J Cancer 59:619–628

    Article  PubMed  CAS  Google Scholar 

  33. Ciocca DR, Oesterreich S, Chamness GC et al (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85:1558–1570

    Article  PubMed  CAS  Google Scholar 

  34. Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70

    Article  PubMed  CAS  Google Scholar 

  35. Konishi H, Matsuzaki H, Tamaka M et al (1997) Activation of protein kinase B (AKT/RAC-protein kinase) by cellular stress and its association with heat shock protein HSP27. FEBS Lett 410:493–498

    Article  PubMed  CAS  Google Scholar 

  36. O’Neill PA, Shaaban AM, West CR et al (2004) Increased risk of malignant progression in benign proliferating breast lesions defined by expression of heat shock protein 27. Br J Cancer 90:182–188

    Article  PubMed  CAS  Google Scholar 

  37. Taylor J, Lymboura M, Pace PE et al (1998) An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int J Cancer 79:334–342

    Article  PubMed  CAS  Google Scholar 

  38. Lambie H, Miremadi A, Pinder SE et al (2003) Prognostic significance of BRCA1 expression in sporadic breast carcinomas. J Pathol 200:207–213

    Article  PubMed  CAS  Google Scholar 

  39. Angele S, Treilleux I, Taniere P et al (2000) Abnormal expression of the ATM and P53 genes in sporadic breast carcinomas. Clin Cancer Res 6:3536–3544

    PubMed  CAS  Google Scholar 

  40. Angele S, Treilleux I, Bremond A et al (2003) Altered expression of DNA double-strand break detection and repair proteins in breast carcinomas. Histopathology 43:347–353

    Article  PubMed  CAS  Google Scholar 

  41. Angele S, Jones C, Reis Filho JS et al (2004) Expression of ATM, p53 and the MRE11-Rad50-NBSI complex in myoepithelial cells from benign and malignant proliferations of the breast. J Clin Pathol 57:1179–1184

    Article  PubMed  CAS  Google Scholar 

  42. Clarke RA, Kairouz R, Watters D et al (1998) Upregulation ATM in sclerosing adenosis of the breast. Mol Pathol 51:224–226

    Article  PubMed  CAS  Google Scholar 

  43. Yan PS, Venkataramu C, Ibrahim A et al (2006) Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res 12:6626–6636

    Article  PubMed  CAS  Google Scholar 

  44. Fabian CJ, Kimler BF, Mayo MS et al (2005) Breast-tissue sampling for risk assessment and prevention. Endocr Res Cancer 12:185–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batchelder, A.J., Gordon-Weeks, A.N. & Walker, R.A. Altered expression of anti-apoptotic proteins in non-involved tissue from cancer-containing breasts. Breast Cancer Res Treat 114, 63–69 (2009). https://doi.org/10.1007/s10549-008-9988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9988-2

Keywords

Navigation