Skip to main content

Advertisement

Log in

Expression of TNF-α leader sequence renders MCF-7 tumor cells resistant to the cytotoxicity of soluble TNF-α

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Transmembrane TNF-α (tmTNF-α) contains a leader sequence (LS) that can be phosphorylated and cleaved at its cytoplasmic portion, inducing IL-12 production. We observed that the breast cancer cell line MDA-MB-231 expressing transmembrane TNF-α (tmTNF-α) at high level was resistant to soluble TNF-α (sTNF-α)-induced cytotoxicity, accompanied by constitutive NF-κB activation. In contrast, MCF-7 cells expressing tmTNF-α at very low level were sensitive to sTNF-α-induced cell death and had no detectable NF-κB activation. Consistently, siRNA-mediated tmTNF-α knockdown blocked NF-κB activation and rendered MDA-MB-231 sensitive. To test our hypothesis that TNF-LS may play an important role in determining the sensitivity of tumor cells to sTNF-α, we stably transfected MCF-7 cells with TNF-LS. We found that transfection of TNF-LS or wild-type TNF-α containing LS constitutively activated NF-κB and conferred the cytotoxic resistance of MCF-7 cells, while transfection of a mutant tmTNF-α lacking the cytoplasmic segment of LS neither activated NF-κB nor affected the sensitivity. However, NF-κB inhibitor PDTC suppressed NF-κB activation and reconstituted sensitivity of TNF-LS/MCF-7 cells. To check whether TNF-LS is required to be cleaved or internalized for NF-κB activation to occur, we used signal peptide peptidase inhibitor (Z-LL)2-ketone and receptor internalization inhibitor MDC to treat cells. Interestingly, both inhibitors increased TNF-LS expression on the cell surface and enhanced NF-κB activation. These results indicate that membrane-anchored TNF-LS contributes to constitutive activation of NF-κB and resistance to sTNF-α-induced cell death. Therefore, TNF-LS appears to be responsible for tmTNF-α-induced resistance in the breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53(1):45–53. doi:10.1016/0092-8674(88)90486-2

    Article  PubMed  CAS  Google Scholar 

  2. Friedmann E, Hauben E, Maylandt K et al (2006) SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8(8):843–848. doi:10.1038/ncb1440

    Article  PubMed  CAS  Google Scholar 

  3. Fluhrer R, Grammer G, Israel L et al (2006) A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b. Nat Cell Biol 8(8):894–896. doi:10.1038/ncb1450

    Article  PubMed  CAS  Google Scholar 

  4. Yamaguchi M, Murakami T, Tomimatsu T et al (1998) Autocrine inhibition of leptin production by tumor necrosis factor-alpha (TNF-alpha) through TNF-alpha type-I receptor in vitro. Biochem Biophys Res Commun 244(1):30–34. doi:10.1006/bbrc.1998.8199

    Article  PubMed  CAS  Google Scholar 

  5. Haas E, Grell M, Wajant H, Scheurich P (1999) Continuous autotropic signaling by membrane-expressed tumor necrosis factor. J Biol Chem 274(25):18107–18112. doi:10.1074/jbc.274.25.18107

    Article  PubMed  CAS  Google Scholar 

  6. Domonkos A, Udvardy A, Laszlo L, Nagy T, Duda E (2001) Receptor-like properties of the 26 kDa transmembrane form of TNF. Eur Cytokine Netw 12(3):411–419

    PubMed  CAS  Google Scholar 

  7. Cayabyab M, Phillips JH, Lanier LL (1994) CD40 preferentially costimulates activation of CD4 + T lymphocytes. J Immunol 152(4):1523–1531

    PubMed  CAS  Google Scholar 

  8. Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, Kwon BS (1994) 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol 24(2):367–374. doi:10.1002/eji.1830240215

    Article  PubMed  CAS  Google Scholar 

  9. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W (1995) Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2(5):507–521. doi:10.1016/1074-7613(95)90031-4

    Article  PubMed  CAS  Google Scholar 

  10. van Essen D, Kikutani H, Gray D (1995) CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 378(6557):620–623. doi:10.1038/378620a0

    Article  PubMed  Google Scholar 

  11. Wiley SR, Goodwin RG, Smith CA (1996) Reverse signaling via CD30 ligand. J Immunol 157(8):3635–3639

    PubMed  CAS  Google Scholar 

  12. Harashima S, Horiuchi T, Hatta N et al (2001) Outside-to-inside signal through the membrane TNF-alpha induces E-selectin (CD62E) expression on activated human CD4 + T cells. J Immunol 166(1):130–136

    PubMed  CAS  Google Scholar 

  13. Mitoma H, Horiuchi T, Hatta N et al (2005) Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology 128(2):376–392. doi:10.1053/j.gastro.2004.11.060

    Article  PubMed  CAS  Google Scholar 

  14. Higuchi M, Nagasawa K, Horiuchi T et al (1997) Membrane tumor necrosis factor-alpha (TNF-alpha) expressed on HTLV-I-infected T cells mediates a costimulatory signal for B cell activation—characterization of membrane TNF-alpha. Clin Immunol Immunopathol 82(2):133–140. doi:10.1006/clin.1996.4291

    Article  PubMed  CAS  Google Scholar 

  15. Rossol M, Meusch U, Pierer M et al (2007) Interaction between transmembrane TNF and TNFR1/2 mediates the activation of monocytes by contact with T cells. J Immunol 179(6):4239–4248

    PubMed  CAS  Google Scholar 

  16. Xin L, Wang J, Zhang H et al (2006) Dual regulation of soluble tumor necrosis factor-alpha induced activation of human monocytic cells via modulating transmembrane TNF-alpha-mediated ‘reverse signaling’. Int J Mol Med 18(5):885–892

    PubMed  CAS  Google Scholar 

  17. Lugering A, Schmidt M, Lugering N, Pauels HG, Domschke W, Kucharzik T (2001) Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology 121(5):1145–1157. doi:10.1053/gast.2001.28702

    Article  PubMed  CAS  Google Scholar 

  18. ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ (2002) Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 50(2):206–211. doi:10.1136/gut.50.2.206

    Article  PubMed  Google Scholar 

  19. Waetzig GH, Rosenstiel P, Arlt A et al (2005) Soluble tumor necrosis factor (TNF) receptor-1 induces apoptosis via reverse TNF signaling and autocrine transforming growth factor-beta1. FASEB J 19(1):91–93

    PubMed  CAS  Google Scholar 

  20. Stevenson FT, Bursten SL, Locksley RM, Lovett DH (1992) Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues. J Exp Med 176(4):1053–1062. doi:10.1084/jem.176.4.1053

    Article  PubMed  CAS  Google Scholar 

  21. Utsumi T, Takeshige T, Tanaka K et al (2001) Transmembrane TNF (pro-TNF) is palmitoylated. FEBS Lett 500(1–2):1–6. doi:10.1016/S0014-5793(01)02576-5

    Article  PubMed  CAS  Google Scholar 

  22. Pocsik E, Duda E, Wallach D (1995) Phosphorylation of the 26 kDa TNF precursor in monocytic cells and in transfected HeLa cells. J Inflamm 45(3):152–160

    PubMed  CAS  Google Scholar 

  23. Watts AD, Hunt NH, Wanigasekara Y et al (1999) A casein kinase I motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in ‘reverse signalling’. EMBO J 18(8):2119–2126. doi:10.1093/emboj/18.8.2119

    Article  PubMed  CAS  Google Scholar 

  24. Jin S, Lu D, Ye S et al (2005) A simplified probe preparation for ELISA-based NF-kappaB activity assay. J Biochem Biophys Methods 65(1):20–29. doi:10.1016/j.jbbm.2005.08.006

    Article  PubMed  CAS  Google Scholar 

  25. Hasegawa T, Suzuki K, Sakamoto C et al (2003) Expression of the inhibitor of apoptosis (IAP) family members in human neutrophils: up-regulation of cIAP2 by granulocyte colony-stimulating factor and overexpression of cIAP2 in chronic neutrophilic leukemia. Blood 101(3):1164–1171. doi:10.1182/blood-2002-05-1505

    Article  PubMed  CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25(4):402–408

    CAS  Google Scholar 

  27. Himeno T, Watanabe N, Yamauchi N et al (1990) Expression of endogenous tumor necrosis factor as a protective protein against the cytotoxicity of exogenous tumor necrosis factor. Cancer Res 50(16):4941–4945

    PubMed  CAS  Google Scholar 

  28. Dollbaum C, Creasey AA, Dairkee SH et al (1988) Specificity of tumor necrosis factor toxicity for human mammary carcinomas relative to normal mammary epithelium and correlation with response to doxorubicin. Proc Natl Acad Sci USA 85(13):4740–4744. doi:10.1073/pnas.85.13.4740

    Article  PubMed  CAS  Google Scholar 

  29. Cai Z, Bettaieb A, Mahdani NE et al (1997) Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-alpha-mediated cytotoxicity. J Biol Chem 272(11):6918–6926. doi:10.1074/jbc.272.11.6918

    Article  PubMed  CAS  Google Scholar 

  30. Luberto C, Hassler DF, Signorelli P et al (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277(43):41128–41139. doi:10.1074/jbc.M206747200

    Article  PubMed  CAS  Google Scholar 

  31. Cai Z, Capoulade C, Moyret-Lalle C et al (1997) Resistance of MCF7 human breast carcinoma cells to TNF-induced cell death is associated with loss of p53 function. Oncogene 15(23):2817–2826. doi:10.1038/sj.onc.1201445

    Article  PubMed  CAS  Google Scholar 

  32. Stall AM, Kroese FG, Gadus FT, Sieckmann DG, Herzenberg LA, Herzenberg LA (1988) Rearrangement and expression of endogenous immunoglobulin genes occur in many murine B cells expressing transgenic membrane IgM. Proc Natl Acad Sci USA 85(10):3546–3550. doi:10.1073/pnas.85.10.3546

    Article  PubMed  CAS  Google Scholar 

  33. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16(23):6914–6925. doi:10.1093/emboj/16.23.6914

    Article  PubMed  CAS  Google Scholar 

  34. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683. doi:10.1126/science.281.5383.1680

    Article  PubMed  CAS  Google Scholar 

  35. Benayoun B, Baghdiguian S, Lajmanovich A et al (2007) NF-{kappa}B-dependent expression of the antiapoptotic factor c-FLIP is regulated by calpain 3, the protein involved in limb-girdle muscular dystrophy type 2A. FASEB J 22(5):1521–1529

    Article  PubMed  Google Scholar 

  36. Lwin T, Hazlehurst LA, Li Z et al (2007) Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-kappaB (RelB/p52) in non-Hodgkin’s lymphoma cells. Leukemia 21(7):1521–1531. doi:10.1038/sj.leu.2404723

    Article  PubMed  CAS  Google Scholar 

  37. Schutze S, Machleidt T, Adam D et al (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 274(15):10203–10212. doi:10.1074/jbc.274.15.10203

    Article  PubMed  CAS  Google Scholar 

  38. Woo CH, Kim TH, Choi JA et al (2006) Inhibition of receptor internalization attenuates the TNFalpha-induced ROS generation in non-phagocytic cells. Biochem Biophys Res Commun 351(4):972–978. doi:10.1016/j.bbrc.2006.10.154

    Article  PubMed  CAS  Google Scholar 

  39. Forster R, Kremmer E, Schubel A et al (1998) Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J Immunol 160(3):1522–1531

    PubMed  CAS  Google Scholar 

  40. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190. doi:10.1016/S0092-8674(03)00521-X

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Malcolm Kennedy for editing the manuscript. This work was supported by the National Natural Science Foundation of China (30670421), National Key Basic Research Program of China from the Ministry of Science and Technology of the People’s Republic of China (2004AA215162).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muxiang Zhou or Zhuoya Li.

Additional information

D. Yan and N. Qin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, D., Qin, N., Zhang, H. et al. Expression of TNF-α leader sequence renders MCF-7 tumor cells resistant to the cytotoxicity of soluble TNF-α. Breast Cancer Res Treat 116, 91–102 (2009). https://doi.org/10.1007/s10549-008-0111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0111-5

Keywords

Navigation