Skip to main content

Advertisement

Log in

2-MeOE2bisMATE and 2-EtE2bisMATE induce cell cycle arrest and apoptosis in breast cancer xenografts as shown by a novel ex vivo technique

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is the leading cause of cancer deaths among women worldwide. The theory of targeting both cancer cells directly and their blood supply has significant therapeutic potential. However, to date, there are few clinically successful single agents that meet these criteria. 2-Methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE) and 2-ethylestradiol-3,17-O,O-bis-sulfamate (2-EtE2bisMATE) are potent inhibitors of proliferation in a range of cancer cells. The work presented here demonstrates the potent in vitro and in vivo effects of these compounds. They cause apoptosis via the intrinsic mitochondrial pathway in both MDA-MB-231 breast cancer cells and endothelial cells. Furthermore, they are potent anti-angiogenic inhibitors in vivo, as shown by their ability to reduce endothelial staining in MDA-MB-231 xenograft tumors. We have developed a novel, flow cytometry based, ex vivo method which shows in cells recovered from MDA-MB-231 tumors treated with 2-MeOE2bisMATE and 2-EtE2bisMATE an increase in intra-tumoral G2-M arrest and apoptosis. The degree of apoptosis inversely correlates to tumor volume. Further in vivo studies reveal that both 2-MeOE2bisMATE and 2-EtE2bisMATE are orally bioavailable and extremely efficacious when compared to clinically tested drugs. As these compounds are anti-proliferative against breast cancer and endothelial cells they have the potential to be potent, dual acting clinical drugs of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics. CA Cancer J Clin 55:77–108

    Article  Google Scholar 

  2. Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N Engl J Med 48:2431–2442

    Article  Google Scholar 

  3. Stanway SJ, Purohit A, Woo LWL et al (2006) Phase I study of STX 64 (667 Coumate) in breast cancer patients: the first study of a steroid sulfatase inhibitor. Clin Cancer Res 12:1585–1592

    Article  PubMed  CAS  Google Scholar 

  4. Nabholtz JM, Gligorov J (2005) The role of taxanes in the treatment of breast cancer. Expert Opin Pharmacother 6:1073–1094

    Article  PubMed  CAS  Google Scholar 

  5. Shak S (1999) Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Semin Oncol 26:71–77

    PubMed  CAS  Google Scholar 

  6. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  7. Vacca A, Iurlaro M, Ribatti D et al (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155

    PubMed  CAS  Google Scholar 

  8. Klement G, Baruchel S, Rak J et al (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24

    Article  PubMed  CAS  Google Scholar 

  9. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 5:1045–1047

    Article  Google Scholar 

  10. Bertolini F, Paul S, Mancuso P et al (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    PubMed  CAS  Google Scholar 

  11. Zhu BT, Conney AH (1998) Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? Cancer Res 58:2269–2277

    PubMed  CAS  Google Scholar 

  12. Pribluda VS, Gubish ER Jr, Lavallee TM et al (2000) 2-Methoxyestradiol: an endogenous antiangiogenic and antiproliferative drug candidate. Cancer Metastasis Rev 19:173–179

    Article  PubMed  CAS  Google Scholar 

  13. Shang W, Konidari I, Schomberg DW (2001) 2-Methoxyestradiol, an endogenous estradiol metabolite, differentially inhibits granulosa and endothelial cell mitosis: a potential follicular antiangiogenic regulator. Biol Reprod 65:622–627

    Article  PubMed  CAS  Google Scholar 

  14. Dingli D, Timm M, Russell SJ et al (2002) Promising preclinical activity of 2-methoxyestradiol in multiple myeloma. Clin Cancer Res 8:3948–3954

    PubMed  CAS  Google Scholar 

  15. Lakhani NJ, Sarkar MA, Venitz J et al (2003) 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy 23:165–172

    Article  PubMed  CAS  Google Scholar 

  16. Mooberry SL (2003) New insights into 2-methoxyestradiol, a promising antiangiogenic and antitumor agent. Curr Opin Oncol 15:425–430

    Article  PubMed  CAS  Google Scholar 

  17. Dahut WL, Lakhani NJ, Gulley JL et al (2006) Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol Ther 5:22–27

    Article  PubMed  CAS  Google Scholar 

  18. Newman SP, Ireson CR, Tutill HJ et al (2006) The role of 17β-hydroxysteroid dehydrogenases in modulating the activity of 2-methoxyestradiol in breast cancer cells. Cancer Res 66:324–330

    Article  PubMed  CAS  Google Scholar 

  19. Purohit A, Hejaz HA, Walden L et al (2000) The effect of 2-methoxyoestrone-3-O-sulphamate on the growth of breast cancer cells and induced mammary tumours. Int J Cancer 85:584–589

    Article  PubMed  CAS  Google Scholar 

  20. MacCarthy-Morrogh L, Townsend PA, Purohit A et al (2000) Differential effects of estrone and estrone-3-O-sulfamate derivatives on mitotic. Arrest, apoptosis, and microtubule assembly in human breast cancer cells. Cancer Res 60:5441–5450

    PubMed  CAS  Google Scholar 

  21. Raobaikady B, Reed MJ, Leese MP et al (2005) Inhibition of MDA-MB-231 cell cycle progression and cell proliferation by C-2-substituted oestradiol mono- and bis-3-O-sulphamates. Int J Cancer 117:150–159

    Article  PubMed  CAS  Google Scholar 

  22. Newman SP, Leese MP, Purohit A et al (2004) Inhibition of in vitro angiogenesis by 2-methoxy- and 2-ethyl-estrogen sulfamates. Int J Cancer 109:533–540

    Article  PubMed  CAS  Google Scholar 

  23. Chander SK, Foster PA, Leese MP et al (2007) In vivo inhibition of angiogenesis by sulphamoylated derivatives of 2-methoxyoestradiol. Br J Cancer 96:1368–1376

    PubMed  CAS  Google Scholar 

  24. Ireson CR, Chander SK, Purohit A et al (2004) Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer 90:932–937

    Article  PubMed  CAS  Google Scholar 

  25. Leese MP, Leblond B, Smith A et al (2006) 2-substituted estradiol bis-sulfamates, multitargeted antitumor agents: synthesis, in vitro SAR, protein crystallography, and in vivo activity. J Med Chem 28:7683–7696

    Article  CAS  Google Scholar 

  26. Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    Article  PubMed  CAS  Google Scholar 

  27. Reers M, Smiley ST, Mottola-Hartshorn C et al (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417

    Article  PubMed  CAS  Google Scholar 

  28. Di Lisa F, Blank PS, Colonna R et al (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol (Lond) 486:1–13

    CAS  Google Scholar 

  29. Ellison G, Klinowska T, Westwood RFR et al (2002) Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55:294–299

    Article  PubMed  CAS  Google Scholar 

  30. Sellappan S, Grijalva R, Zhou X et al (2004) Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res 64:3469–3485

    Article  Google Scholar 

  31. Rae JM, Creighton CJ, Meck JM et al (2007) MDA-MB-435 cells are derived from M14 Melanoma cells-a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13–19

    Article  PubMed  Google Scholar 

  32. Day JM, Newman SP, Comninos A et al (2003) The effects of 2-substituted oestrogen sulphamates on the growth of prostate and ovarian cancer cells. J Steroid Biochem Mol Biol 84:317–325

    Article  PubMed  CAS  Google Scholar 

  33. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 30:626–629

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding: This research was supported by Sterix Ltd., a member of the Ipsen Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, P.A., Ho, Y.T., Newman, S.P. et al. 2-MeOE2bisMATE and 2-EtE2bisMATE induce cell cycle arrest and apoptosis in breast cancer xenografts as shown by a novel ex vivo technique. Breast Cancer Res Treat 111, 251–260 (2008). https://doi.org/10.1007/s10549-007-9791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9791-5

Keywords

Navigation