Skip to main content

Advertisement

Log in

Mechanisms of acquired resistance to 2-(4-Amino-3-methylphenyl)benzothiazole in breast cancer cell lines

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Compounds within the 2-(4-aminophenyl)benzothiazole class represent extremely potent and selective experimental antitumour agents. The lysylamide prodrug of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole is undergoing phase I clinical evaluation. Extensive studies to elucidate mechanisms underlying the stark selectivity demonstrated potent cytosolic AhR ligand binding and cytochrome P450 1A1-catalysed bioactivation. Two human derived breast cell lines, initially exquisitely sensitive to this class of agent (GI50 < 5 nM) have been derived displaying acquired resistance to 2-(4-amino-3-methylphenyl)benzothiazole (DF 203; GI50 > 50 μM). Cross resistance to 2-(4-amino-3-iodophenyl)benzothiazole and 2-(4-amino-3-cyanophenyl)benzothiazole is observed (GI50 > 30 μM) as is > 100-fold reduced sensitivity of the two variant lines to 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203). In contrast, cell lines possessing acquired resistance to DF 203 (203R) retain sensitivity to benzo[a]pyrene and doxorubicin. Examination of DF 203-treated cells by confocal microscopy and HPLC analyses of nutrient media concur revealing diminished depletion of DF 203 from medium and impaired intracellular DF 203 retention. In contrast to cytosolic arylhydrocarbon (AhR) receptors of wild type cells, AhR appears constitutively localised within nuclei of 203R cells; consequently, DF 203 fails to drive transcription of cyp1a1. DF 203- and 5F 203-derived DNA adducts fall significantly in 203R cells. Reduced number and intensity of γH2AX foci report protection against DF 203-evoked DNA double strand breaks. In conclusion, aberrant AhR signalling underlies at least in part acquired resistance to DF 203. Intriguingly, comparisons of gene transcription profiles between sensitive and resistant paired lines reveal > 5-fold up-regulation of cyp1b1 expression, a protein implicated in resistance to therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ab:

Antibody

ADPRT:

ADP ribosyl transferase

AhR:

Arylhydrocarbon receptor

B[a]P:

Benzo[a]pyrene

cy:

Cyanine

CYP1A1:

Cytochrome P450 1A1

CYP1B1:

Cytochrome P450 1B1

DF 129:

2-(4-amino-3-iodophenyl)benzothiazole

DF 203:

2-(4-amino-3-methylphenyl)benzothiazole

DMSO:

Dimethylsulphoxide

DSB:

Double strand break

ER:

Oestrogen receptor

5F 203:

2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole

GI50 :

Agent concentration which inhibits growth by 50%

γH2AX:

Serine 139 phosphorylation of histone H2AX

HPLC:

High performance liquid chromatography

IH 191:

2-(4-amino-3-cyanophenyl)benzothiazole

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBS:

Phosphate-buffered saline

PD:

Pharmacodynamic

203R:

DF 203-resistance

Rt:

Retention time

TCDD:

2,3,7,8-tetrachlorodibenzo-p-dioxin

TK:

Thymidine kinase

wt:

Wild type

References

  1. Goldie JH, Coldman AJ (1998) Molecular aspects of drug resistance. In Drug Resistance in Cancer. Mechanisms and Models, Cambridge University Press, UK, pp 59–89

  2. Mashima T, Tsuruo T (2005) Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat 8:339–343

    Article  PubMed  CAS  Google Scholar 

  3. Cowan KH, Goldsmith ME, Levine RM, Aitken SC, Douglass E, Clendeninn N, Niehuis AW, Lippman NE (1982) Dihydrofolate reductase gene amplification and possible rearrangement in estrogen-responsive methotrexate-resistant human breast cancer cells. J Biol Chem 257:15079–15086

    PubMed  CAS  Google Scholar 

  4. Akman SA, Forrest G, Chu FF, Esworthy S, Doroshow JH (1990) Antioxidant and xenobiotic-metabolizing enzyme gene expression in doxorubicin-resistant MCF-7 breast cancer cells. Cancer Res 50:1397–1402

    PubMed  CAS  Google Scholar 

  5. Katzenellebogen BS, Kendra KL, Norman MJ, Berthois Y (1987) Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. Cancer Res 47:4355–4360

    Google Scholar 

  6. Jiang S, Wolf DM, Yingling JM, Chang C, Jordan VC (1992) An estrogen receptor positive MCF-7 clone that is resistant to antiestrogens and estradiol. Mol Cell Endocrinol 90:77–86

    Article  PubMed  CAS  Google Scholar 

  7. Cowan KH, Batist G, Talpule A, Sinha BK, Myers CE (1986) Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc Natl Acad Sci USA 83:9328–9332

    Article  PubMed  CAS  Google Scholar 

  8. Moore M, Wang X, Lu Y-F, Wormke M, Craig A, Gerlach JH, Burghardt R, Barhoumi R, Safe S (1994) Benzo[a]pyrene-resistant MCF-7 human breast cancer cells. J Biol Chem 269:11751–11759

    PubMed  CAS  Google Scholar 

  9. Trapani V, Patel V, Leong CO, Ciolino HP, Yeh GC, Hose C, Trepel JB, Stevens MFG, Sausville EA, Loaiza-Perez AI (2003) DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. Br J Cancer 88:599–605

    Article  PubMed  CAS  Google Scholar 

  10. Bradshaw TD, Westwell AD (2004) The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate. Curr Med Chem 11:1009–1023

    Article  PubMed  CAS  Google Scholar 

  11. Bradshaw TD, Fichtner I, Bibby MJ, Double JA, Cooper PA, Alley MC, Tomaszewjski JE, Donahue S, Stinson SF, Sausville EA, Stevens MFG (2002) Preclinical evaluation of amino acid prodrugs of novel antitumor 2-(4-amino-3-methylphenyl)benzothiazoles. Mol Cancer Ther 1:239–246

    PubMed  CAS  Google Scholar 

  12. Bradshaw TD, Chua M-S, Browne HL, Trapani V, Sausville EA, Stevens MFG (2002) In vitro evaluation of amino acid prodrugs of novel antitumour 2-(4-amino-3-methylphenyl)benzothiazoles. Br J Cancer 86:1348–1354

    Article  PubMed  CAS  Google Scholar 

  13. Loaiza-Perez A, Trapani V, Hose C, Singh SS, Trepel J, Stevens MFG, Bradshaw TD, Sausville EA (2002) The aryl hydrocarbon receptor mediates sensitivity of MCF-7 breast cancer cells to the antitumor agent 2-(4-aminophenyl)benzothiazole. Mol Pharmacol 61:13–19

    Article  PubMed  CAS  Google Scholar 

  14. Kashiyama E, Hutchinson I, Chua M-S, Stinson SF, Phillips LR, Kaur G, Sausville EA, Bradshaw TD, Westwell AD, Stevens MFG (1999) Antitumor benzothiazoles. 8. Synthesis, metabolic formation and biological properties of the C-and N-oxidation products of antitumor 2-(4-aminopheny)benzothiazoles. J Med Chem 42:4172–4184

    Article  PubMed  CAS  Google Scholar 

  15. Chua M-S, Kashiyama E, Bradshaw TD, Stinson SF, Brantley E, Sausville EA, Stevens MFG (2000) Role of CYP1A1 in modulation of antitumor properties of the novel agent 2-(4-amino-3-methylphenyl)benzothiazole (DF 203, NSC 674495) in human breast cancer cells. Cancer Res 60:5196–5203

    PubMed  CAS  Google Scholar 

  16. Leong C-O, Gaskell M, Martin EA, Heydon RT, Farmer PB, Bibby MC, Cooper PA, Double JA, Bradshaw TD, Stevens MFG (2003) Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumour cells in vitro and in vivo. Br J Cancer 88:470–477

    Article  PubMed  CAS  Google Scholar 

  17. Hutchinson I, Chua M-S, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MFG (2001) Antitumor benzothiazoles. 14. The synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles. J Med Chem 44:1446–1455

    Article  PubMed  CAS  Google Scholar 

  18. Bradshaw TD, Wrigley S, Shi D-F, Schultz RJ, Paull KD, Stevens MFG (1998) 2-(4-Aminophenyl)benzothiazoles: novel agents with selective profiles of in vitro and in vivo activity. Br J Cancer 77:745–752

    PubMed  CAS  Google Scholar 

  19. Fichtner I, Monks A, Hose C, Stevens MFG, Bradshaw TD (2004) The experimental antitumor agent Phortress and doxorubicin are equiactive against human-derived breast carcinoma xenograft models. Breast Cancer Res Treat 87:97–107

    Article  PubMed  CAS  Google Scholar 

  20. Berghard A, Gradin K, Pongratz I, Whitelaw M, Poellinger L (1993) Cross coupling of signal transduction pathways: the dioxin receptor mediates induction of cytochrome P-4501A1 expression via protein kinase C-dependent mechanism. Mol Cell Biol 13:677–689

    PubMed  CAS  Google Scholar 

  21. Nordeen SK (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6:454–457

    PubMed  CAS  Google Scholar 

  22. Gupta RC (1985) Enhanced sensitivity of 32P-postlabeling analysis of aromatic carcinogen-DNA adducts. Cancer Res 45:5656–5662

    PubMed  CAS  Google Scholar 

  23. Reddy MV, Randerath K (1986) Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7:1543–1551

    Article  PubMed  CAS  Google Scholar 

  24. Clarke PA, te Poele R, Wooster R, Workman P (2001) Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol 62:1311–1336

    Article  PubMed  CAS  Google Scholar 

  25. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1988) DNA double-stranded breaks induce histone H2AX phosporylation on serine 139. J Biol Chem 273:5858–5868

    Article  Google Scholar 

  26. Hayes JD, Wolf CR (1990) Molecular mechanisms of drug resistance. Biochem J 272:281–295

    PubMed  CAS  Google Scholar 

  27. Yeh GC, Daschner PJ, Lopaczynska J, MacDonald CJ, Ciolino HP (2001) Modulation of glucose-6-phosphate dehydrogenase activity and expression is associated with aryl hydrocarbon resistance in vitro. J Biol Chem 276:34708–34713

    Article  PubMed  CAS  Google Scholar 

  28. Degen GH, Vogel C, Abel J (2001) Prostaglandin synthases. In: Ioannides C (ed) Enzyme systems that metabolise drugs and other xenobiotics. John Wiley & Sons Ltd, pp 189–229

  29. Leong C-O, Suggitt M, Swaine DJ, Bibby MC, Stevens MFG, Bradshaw TD (2004) In vitro, in vivo and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles. Mol Can Ther 3:1565–1575

    CAS  Google Scholar 

  30. Lockett KL, Hall MC, Xu J, Zheng SL, Berwick M, Chuang SC, Clark PE, Cramer SD, Lohmen K, Hu J (2004) The ADPRT V62A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res 64:6344–6348

    Article  PubMed  CAS  Google Scholar 

  31. McFadyen MCE, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI (2001) Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 62:207–212

    Article  PubMed  CAS  Google Scholar 

  32. Rochat B, Morsman JM, Murray GI, Fiff WD, McLeod HL (2001) Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation. J. Phamacol Exp Ther 296:537–541

    CAS  Google Scholar 

  33. Bandiera S, Weidlich S, Harth V, Broede P, Ko Y, Friedberg T (2005) Proteasomal degradation of human CYP1B1: effect of the Asn435Ser polymorphism on the post-translational regulation of CYP1B1 expression. Mol Pharmacol 67:435–443

    Article  PubMed  CAS  Google Scholar 

  34. Sissung TM, Price DK, Sparreboom A, Figg WD (2006) Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Can Res 4:135–150

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors would like to thanks Professor Paul Workman for collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey D. Bradshaw.

Additional information

Part 28 in the “Antitumour Benzothiazoles” series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, T.D., Stone, E.L., Trapani, V. et al. Mechanisms of acquired resistance to 2-(4-Amino-3-methylphenyl)benzothiazole in breast cancer cell lines. Breast Cancer Res Treat 110, 57–68 (2008). https://doi.org/10.1007/s10549-007-9690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9690-9

Keywords

Navigation