Skip to main content

Advertisement

Log in

Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39(2):241–248

    PubMed  Google Scholar 

  • Bassett GW Jr (1991) Equivariant, monotonic, 50 % breakdown estimators. Am Stat 45(2):135–137

    Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  PubMed  Google Scholar 

  • Buzsaki G, Anastassious CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420

    Article  PubMed  CAS  Google Scholar 

  • Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A (2012) Scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol 3:186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • El Boustani S, Marre O, Béhuret S, Baudot P, Yger P, Bal T, Frégnac Y (2009) Network-state modulation of power-law frequency-scaling in visual cortical neurons. PLoS Comput Biol 5(9):e1000519

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel AK, Gerloff C, Hilgetag CC, Nolte G (2013) Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80(4):867–886

    Article  PubMed  CAS  Google Scholar 

  • Fransson P, Metsäranta M, Blennow M, Åden U, Lagercrantz H, Vanhatalo S (2013) Early development of spatial patterns of power-law frequency scaling in fMRI resting-state and EEG data in the newborn brain. Cereb Cortex 23(3):638–646

    Article  PubMed  Google Scholar 

  • Freeman WJ (2007) Scale-free neocortical dynamics. Scholarpedia 2:1357

    Article  Google Scholar 

  • Gao J, Hu J, Tung WW (2011) Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering. PLoS One 6(9):e24331. doi:10.1371/journal.pone.0024331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • González J, Gamundi A, Rial R, Nicolau MC, de Vera L, Pereda E (1999) Nonlinear, fractal, and spectral analysis of the EEG of lizard, Gallotia galloti. Am J Physiol Regul Integr Comp Physiol 277(1):R86–R93

    Google Scholar 

  • Gray CM (1994) Synchronous oscillations in neuronal systems: mechanisms and functions. J Comput Neurosci 1(1–2):11–38

    Article  PubMed  CAS  Google Scholar 

  • Hanslmayr S, Gross J, Klimesch W, Shapiro KL (2011) The role of alpha oscillations in temporal attention. Brain Res Rev 67(1):331–343

    Article  PubMed  Google Scholar 

  • He BJ (2014) Scale-free brain activity: past, present, and future. Trends Cognit Sci 18(9):480–487

    Article  Google Scholar 

  • He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66(3):353–369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hwa RC, Ferree TC (2002) Scaling properties of fluctuations in the human electroencephalogram. Phys Rev E 66(2):021901

    Article  Google Scholar 

  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Fukunaga M, de Zwart JA, Duyn JH (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51(1):102–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10(4):422–437

    Article  Google Scholar 

  • Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–13620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling in the brain surface electric potential. PLoS Comput Biol 5(12):e1000609

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electrical fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Book  Google Scholar 

  • Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, Hegerl U (2009) EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage 45(2):319–332

    Article  PubMed  Google Scholar 

  • Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87

    Article  PubMed  CAS  Google Scholar 

  • Pereda E, Gamundi A, Rial R, Gonzalez J (1998) Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages. Neurosci Lett 250(2):91–94

    Article  PubMed  CAS  Google Scholar 

  • Rinzel J, Ermentrout GB (1998) Analysis of neural excitability and oscillations. Methods Neuronal Model 2:251–292

    Google Scholar 

  • Robinson PA (2003) Interpretation of scaling properties of electroencephalographic fluctuations via spectral analysis and underlying physiology. Phys Rev E 67(3):032902

    Article  CAS  Google Scholar 

  • Schabus M, Pelikan C, Chwala-Schlegel N, Weilhart K, Roehm D, Donis J, Klimesch W (2011) Oscillatory brain activity in vegetative and minimally conscious state during a sentence comprehension task. Funct Neurol 26(1):31

    PubMed  PubMed Central  Google Scholar 

  • Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13(2):121–134

    PubMed  CAS  Google Scholar 

  • Wong CW, Olafsson V, Tal O, Liu TT (2013) The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. Neuroimage 83:983–990

    Article  PubMed  Google Scholar 

  • Yamamoto YOSHIHARU, Hughson RL (1991) Coarse-graining spectral analysis: new method for studying heart rate variability. J Appl Physiol 71(3):1143–1150

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Hughson RL (1993) Extracting fractal components from time series. Phys D 68(2):250–264

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported in part by NIH R01MH104402. The authors are thankful to Dr. Shao-Chin Hung for proof reading and constructive comments, to Drs. Masaki Fukunaga and Jeff Duyn for assistance in collecting the MEG data, and to Dr. Naotaka Fujii for making the macaque ECoG data publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongming Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, H., Liu, Z. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal. Brain Topogr 29, 13–26 (2016). https://doi.org/10.1007/s10548-015-0448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-015-0448-0

Keywords

Navigation