Skip to main content
Log in

A Boundary-Layer Scaling for Turbulent Katabatic Flow

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Scaling relationships are proposed for the turbulent katabatic flow of a stably stratified fluid down a homogeneously cooled planar slope—the turbulent analogue of a Prandtl-type slope flow. The \(\Pi \) Theorem predicts that such flows are controlled by three non-dimensional parameters: the slope angle, the Prandtl number, and a Reynolds number defined in terms of the surface thermal forcing (surface buoyancy or surface buoyancy flux), Brunt-Väisälä frequency, slope angle, and molecular viscosity and diffusivity coefficients. However, by exploiting the structure of the governing differential equations in a boundary-layer form, scaled equations are deduced that involve only two non-dimensional parameters: the Prandtl number and a modified Reynolds number. In the proposed scaling framework, the slope angle does not appear as an independent governing parameter, but merely acts as a stretching factor in the scales for the dependent and independent variables, and appears in the Reynolds number. Based on the boundary-layer analysis, we hypothesize that the full katabatic-flow problem is largely controlled by two rather than three parameters. Preliminary tests of the scaling hypothesis using data from direct numerical simulations provide encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The Prandtl solution for wind and buoyancy, together with pressure obtained from the quasi-hydrostatic equation (the equation to which the slope-normal equation of motion reduces in the one-dimensional framework), constitute an exact solution of the viscous Boussinesq equations of motion, thermal energy and mass conservation (incompressibility condition).

  2. In Schumann (1990), as in the other LES/DNS studies cited above, the flow was generated from rest by the sudden application of a surface thermal perturbation (buoyancy or buoyancy flux).

  3. If the \(X\)-axis points downslope, the signs of the \(\sin \alpha \) factors in (2) and (5) must be changed.

  4. Results are shown at the (uncoordinated) terminal times of the individual simulations. In general, the end times correspond to different phases of the temporal oscillation. However, the amplitudes of the velocity and buoyancy oscillations decay with time and are small fractions of the mean characteristic velocity and thermal disturbances at these later times.

  5. For the purpose of the present discussion we define the boundary-layer depths for momentum and buoyancy loosely as the heights at which the magnitudes of the downslope velocity and buoyancy are reduced to some small percentage (say, 10 %) of their peak magnitudes.

References

  • Adolphs U, Wendler G (1995) A pilot study on the interactions between katabatic winds and polynyas at the Adélie Coast, eastern Antarctica. Antarct Sci 7:307–314

    Article  Google Scholar 

  • Atkinson BW (1981) Meso-scale atmospheric circulations. Academic Press, London, 495 pp

  • Axelsen SL, Dop H (2009a) Large-eddy simulation of katabatic winds. Part 1: comparison with observations. Acta Geophys 57:803–836

  • Axelsen SL, van Dop H (2009b) Large-eddy simulation of katabatic winds. Part 2: sensitivity study and comparison with analytical models. Acta Geophys 57:837–856

  • Barthélemy A, Hugues G, Mathiot P, Fichefet T (2012) Inclusion of a katabatic wind correction in a coarse-resolution global coupled climate model. Ocean Model 48:45–54

    Google Scholar 

  • Bastin S, Drobinski P (2005) Temperature and wind velocity oscillations along a gentle slope during sea-breeze events. Boundary-Layer Meteorol 114:573–594

    Article  Google Scholar 

  • Bejan A (2013) Convection heat transfer. Wiley, Hoboken, 696 pp

  • Brazel AJ, Fernando HJS, Hunt JCR, Selover N, Hedquist BC, Pardyjak E (2005) Evening transition observations in Phoenix, Arizona. J Appl Meteorol 44:99–112

    Article  Google Scholar 

  • Bromwich DH, Kurtz DD (1984) Katabatic wind forcing of the Terra Nova Bay polynya. J Geophys Res 89:3561–3572

    Article  Google Scholar 

  • Bromwich DH (1989) Satellite analyses of Antarctic katabatic wind behavior. Bull Am Meteorol Soc 70:738–749

    Article  Google Scholar 

  • Bromwich D, Liu Z, Rogers AN, Van Woert ML (1998) Winter atmospheric forcing of the Ross Sea polynya. In: Jacobs SS, Weiss RF (eds) Ocean, ice, and atmosphere: interactions at the Antarctic continental margin, Antarctic research series, vol 75. American Geophysical Union, Washington, pp 101–133

    Google Scholar 

  • Burkholder B, Fedorovich E, Shapiro A (2011) Evaluating sub-grid scale models for large-eddy simulation of turbulent katabatic flow. Quality and reliability of large-eddy simulations II. Springer, Dordrecht, pp 149–160

  • Chemel C, Staquet C, Largeron Y (2009) Generation of internal gravity waves by a katabatic wind in an idealized alpine valley. Meteorol Atmos Phys 103:187–194

    Article  Google Scholar 

  • Clements WE, Archuleta JA, Hoard DE (1989) Mean structure of the nocturnal drainage flow in a deep valley. J Appl Meteorol 28:457–462

    Article  Google Scholar 

  • Cotton JH, Michael KJ (1994) The monitoring of katabatic wind-coastal polynya interaction using AVHRR imagery. Antarct Sci 6:537–540

    Article  Google Scholar 

  • Defant F (1949) Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch Meteorol Geophys Bioklim Ser A 1:421–450

    Article  Google Scholar 

  • Egger J (1990) Thermally forced flows: theory. In: Blumen W (ed) Atmospheric processes over complex terrain, vol 45. Meteorological Monographs. American Meteorological Society, Boston, pp 43–58

    Google Scholar 

  • Fedorovich E, Shapiro A (2009a) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57:981–1010

    Article  Google Scholar 

  • Fedorovich E, Shapiro A (2009b) Turbulent natural convection along a vertical plate immersed in a stably stratified fluid. J Fluid Mech 636:41–57

    Article  Google Scholar 

  • Fernando HJS (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365–389

    Article  Google Scholar 

  • Fernando HJS, Lee SM, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1:107–164

    Article  Google Scholar 

  • Gallee H, Schayes G (1994) Development of a 3-dimensional meso-\(\gamma \) primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122:671–685

    Article  Google Scholar 

  • Godeferd FS, Staquet C (2003) Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J Fluid Mech 486:115–159

    Article  Google Scholar 

  • Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58:3349–3354

    Article  Google Scholar 

  • Grisogono B, Oerlemans J (2002) Justifying the WKB approximation in pure katabatic flows. Tellus 54A:453–462

    Article  Google Scholar 

  • Grisogono B, Axelsen SL (2012) A note on the pure katabatic wind maximum over gentle slopes. Boundary-Layer Meteorol 145:527–538

    Article  Google Scholar 

  • Heinemann G, Klein T (2002) Modelling and observations of the katabatic flow dynamics over Greenland. Tellus 54A:542–554

    Article  Google Scholar 

  • Hootman BW, Blumen W (1983) Analysis of nighttime drainage winds in Boulder, Colorado during 1980. Mon Weather Rev 111:1052–1061

    Article  Google Scholar 

  • Hopfinger EJ (1987) Turbulence in stratified fluids: a review. J Geophys Res 92:5287–5303

    Article  Google Scholar 

  • Hunt JCR, Fernando HJS, Princevac M (2003) Unsteady thermally driven flows on gentle slopes. J Atmos Sci 60:2169–2182

    Article  Google Scholar 

  • Jiménez MA, Cuxart J (2005) Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: range of applicability. Boundary-Layer Meteorol 115:241–261

    Article  Google Scholar 

  • Kundu PK, Cohen IM (2002) Fluid mechanics, 2nd edn. Academic Press, San Diego, 730 pp

  • Langhaar HL (1951) Dimensional analysis and theory of models. Wiley, New York, 166 pp

  • Largeron Y, Staquet C, Chemel C (2013) Characterization of oscillatory motions in the stable atmosphere of a deep valley. Boundary-Layer Meteorol 148:439–454

    Article  Google Scholar 

  • Lee SM, Fernando HJS, Princevac M, Zajic D, Sinesi M, McCulley JL, Anderson J (2003) Transport and diffusion of ozone in the nocturnal and morning planetary boundary layer of the Phoenix valley. Environ Fluid Mech 3:331–362

    Article  Google Scholar 

  • Lindborg E (2006) The energy cascade in a strongly stratified fluid. J Fluid Mech 550:207–242

    Article  Google Scholar 

  • Lu R, Turco RP (1994) Air pollutant transport in a coastal environment. Part I: two-dimensional simulations of sea-breeze and mountain effects. J Atmos Sci 51:2285–2308

    Article  Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11:263–279

    Article  Google Scholar 

  • Massom RA, Harris PT, Michael KJ, Potter MJ (1998) The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann Glaciol 27:420–426

    Google Scholar 

  • Mauritsen T, Svensson G, Zilitinkevich SS, Esau I, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci 64:4113–4126

    Article  Google Scholar 

  • McNider RT (1982) A note on velocity fluctuations in drainage flows. J Atmos Sci 39:1658–1660

    Article  Google Scholar 

  • Mo R (2013) On adding thermodynamic damping mechanisms to refine two classical models of katabatic winds. J Atmos Sci 70:2325–2334

    Article  Google Scholar 

  • Noppel H, Fiedler F (2002) Mesoscale heat transport over complex terrain by slope winds: a conceptual model and numerical simulations. Boundary-Layer Meteorol 104:73–97

    Article  Google Scholar 

  • Oerlemans J (1998) The atmospheric boundary layer over melting glaciers. In: Holtslag AAM, Duynkerke PG (eds) Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 129–153

    Google Scholar 

  • Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus A 54:440–452

    Article  Google Scholar 

  • Ohshima KI, Fukamachi Y, Williams GD, Nihashi S, Roquet F, Kitade Y, Tamura T, Hirano D, Field I, Hindell MA, Aoki S, Wakatsuchi M (2013) Antarctic bottom water production by intense sea-ice formation in the Cape Darnley polynya. Nat Geosci 6:235–240

    Article  Google Scholar 

  • Papadopoulos KH, Helmis CG, Soilemes AT, Kalogiros J, Papageorgas PG, Asimakopoulos DN (1997) The structure of katabatic flows down a simple slope. Q J R Meteorol Soc 123:1581–1601

    Article  Google Scholar 

  • Parish TP, Waight KT (1987) The forcing of antarctic katabatic winds. Mon Weather Rev 115:2214–2226

    Article  Google Scholar 

  • Parish TP (1992) On the role of Antarctic katabatic winds in forcing large-scale tropospheric motions. J Atmos Sci 49:1374–1385

    Article  Google Scholar 

  • Parmhed O, Oerlemans J, Grisogono B (2004) Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland. Q J R Meteorol Soc 130:1137–1151

    Article  Google Scholar 

  • Pettersson Reif BA, Andreassen Ø (2003) On local isotropy in stratified homogeneous turbulence. SIAM J Appl Math 64:309–321

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, UK, 771 pp

  • Poulos G, Zhong S (2008) An observational history of small-scale katabatic winds in mid-latitudes. Geogr Compass 2:1798–1821

    Article  Google Scholar 

  • Princevac M, Hunt JCR, Fernando HJS (2008) Quasi-steady katabatic winds on slopes in wide valleys: hydraulic theory and observations. J Atmos Sci 65:627–643

    Article  Google Scholar 

  • Prandtl L (1942) Führer durch die Strömungslehre. Vieweg and Sohn, Braunschweig, 648 pp

  • Raga GB, Baumgardner D, Kok G, Rosas I (1999) Some aspects of boundary layer evolution in Mexico City. Atmos Environ 33:5013–5021

    Article  Google Scholar 

  • Renfrew IA (2004) The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Q J R Meteorol Soc 130:1023–1045

    Article  Google Scholar 

  • Renfrew IA, Anderson PS (2006) Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Q J R Meteorol Soc 132:779–802

    Article  Google Scholar 

  • Riley JJ, Lelong M-P (2000) Fluid motions in the presence of strong stable stratification. Annu Rev Fluid Mech 32:613–657

    Article  Google Scholar 

  • Schumann U (1990) Large-eddy simulation of the up-slope boundary layer. Q J R Meteorol Soc 116:637–670

    Article  Google Scholar 

  • Shapiro A, Fedorovich E (2007) Katabatic flow along a differentially-cooled sloping surface. J Fluid Mech 571:149–175

    Article  Google Scholar 

  • Shapiro A, Burkholder B, Fedorovich E (2012) Analytical and numerical investigation of two-dimensional katabatic flow resulting from local surface cooling. Boundary-Layer Meteorol 145:249–272

    Article  Google Scholar 

  • Smith CM, Porté-Agel F (2013) Comparison of subgrid models for large-eddy simulation of katabatic flows. Q J R Meteorol Soc. doi:10.1002/qj.2212

  • Smith CM, Skyllingstad ED (2005) Numerical simulation of katabatic flow with changing slope angle. Mon Weather Rev 133:3065–3080

    Article  Google Scholar 

  • Steyn DG, De Wekker SFJ, Kossmann M, Martilli A (2012) Boundary layers and air quality in mountainous terrain. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting: recent progress and current challenges. Springer, Dordrecht, pp 261–289

    Google Scholar 

  • Thoroddsen ST, Van Atta CW (1992) The influence of stable stratification on small-scale anisotropy and dissipation in turbulence. J Geophys Res 97:3647–3658

  • Thoroddsen ST, Van Atta CW (1996) Experiments on density-gradient anisotropies and scalar dissipation of turbulence in a stably stratified fluid. J Fluid Mech 322:383–409

  • Tyson PD (1968) Velocity fluctuations in the mountain wind. J Atmos Sci 25:381–384

    Article  Google Scholar 

  • Van Woert ML (1999) Wintertime dynamics of the Terra Nova Bay polynya. J Geophys Res 104:7753–7769

    Article  Google Scholar 

  • Waite ML, Bartello P (2004) Stratified turbulence dominated by vortical motion. J Fluid Mech 517:281–308

    Article  Google Scholar 

  • Werne J, Fritts DC (2001) Anisotropy in a stratified shear layer. Phys Chem Earth (B) 26:263–268

    Article  Google Scholar 

  • Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen W (ed) Atmospheric processes over complex terrain, vol 45. Meteorological Monographs. American Meteorological Society, Boston, pp 5–42

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York, 355 pp

  • Williams GD, Aoki S, Jacobs SS, Rintoul SR, Tamura T, Bindoff NL (2010) Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149\(^{\circ }\text{ E }\)). J Geophys Res 115:C04027. doi: 10.1029/2009JC005812

    Google Scholar 

  • Wong ABD, Griffiths RW (1999) Stratification and convection produced by multiple turbulent plumes. Dyn Atmos Oceans 30:101–123

    Article  Google Scholar 

  • Zammett RJ, Fowler AC (2007) Katabatic winds on ice sheets: a refinement of the Prandtl model. J Atmos Sci 64:2707–2716

    Article  Google Scholar 

  • Zardi D, Whiteman CD (2012) Diurnal mountain wind systems. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting: recent progress and current challenges. Springer, Dordrecht, pp 35–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Shapiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, A., Fedorovich, E. A Boundary-Layer Scaling for Turbulent Katabatic Flow. Boundary-Layer Meteorol 153, 1–17 (2014). https://doi.org/10.1007/s10546-014-9933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-014-9933-3

Keywords

Navigation