Skip to main content
Log in

Idealized Large-Eddy Simulations of Sea and Lake Breezes: Sensitivity to Lake Diameter, Heat Flux and Stability

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Idealized large-eddy simulations of lake and sea breezes are conducted to determine the sensitivity of these thermally-driven circulations to variations in the land-surface sensible heat flux and initial atmospheric stability. The lake-breeze and sea-breeze metrics of horizontal wind speed, horizontal extent, and depth are assessed. Modelled asymmetries about the coastline in the horizontal extent of the low-level onshore flow are found to vary as a function of the heat flux and stability. Small lake breezes develop similarly to sea breezes in the morning, but have a significantly weaker horizontal wind-speed component and a smaller horizontal extent than sea breezes in the afternoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes RA (1984) Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J Clim Appl Meteorol 23: 541–554

    Article  Google Scholar 

  • Antonelli M, Rotunno R (2007) Large-eddy simulation of the onset of the sea breeze. J Atmos Sci 64: 4445–4457

    Article  Google Scholar 

  • Baldi M, Dalu GA, Pielke RA (2008) Vertical velocities and available potential energy generated by landscape variability—theory. J Appl Meteorol Climatol 47: 397–410

    Article  Google Scholar 

  • Bastin S, Drobinski P (2005) Temperature and wind velocity oscillations along a gentle slope during sea breeze events. Boundary-Layer Meteorol 114: 573–594

    Article  Google Scholar 

  • Bastin S, Drobinski P (2006) Sea breeze induced mass transport over complex terrain in southeastern France: a case study. Q J Roy Meteorol Soc 132: 405–423

    Article  Google Scholar 

  • Catalano F, Moeng CH (2010) Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Boundary-Layer Meteorol 137: 49–75

    Article  Google Scholar 

  • Courault D, Drobinski P, Brunet Y, Lacarrere P, Talbot C (2007) Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Boundary-Layer Meteorol 124: 383–403

    Article  Google Scholar 

  • Crosman ET (2011) Idealized large-eddy simulation sensitivity studies of sea and lake breezes. Dissertation, University of Utah, USA. http://content.lib.utah.edu/u?/us-etd3,20977. Accessed May 2011

  • Crosman ET, Horel JD (2010) Sea and lake breezes: a review of numerical studies. Boundary-Layer Meteorol 137: 1–29

    Article  Google Scholar 

  • Dailey PS, Fovell RG (1999) Numerical simulation of the interaction between the sea breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon Wea Rev 127: 858–878

    Article  Google Scholar 

  • Dalu GA, Pielke RA (1989) An analytical study of the sea breeze. J Atmos Sci 46: 1815–1825

    Article  Google Scholar 

  • Drobinski P, Dubos T (2009) Linear breeze scaling: from large-scale land/sea-breezes to mesoscale inland breezes. Q J Roy Meteorol Soc 135: 1755–1766

    Article  Google Scholar 

  • Drobinski P, Bastin S, Dabas AM, Delville P, Reitebuch O (2006) Variability of the three-dimensional sea-breeze structure in southeastern France: observations and evaluation of empirical scaling laws. Ann Geophys 24: 1783–1799

    Article  Google Scholar 

  • Fovell RG (2005) Convective initiation ahead of the sea breeze front. Mon Wea Rev 133: 264–278

    Article  Google Scholar 

  • Fovell RG, Dailey PS (2001) Numerical simulation of the interaction between the sea breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon Wea Rev 129: 2057–2072

    Article  Google Scholar 

  • Garratt JR (1990) The internal boundary-layer—a review. Boundary-Layer Meteorol 50: 171–203

    Article  Google Scholar 

  • Hidalgo J, Masson V, Gimeno-Presa L (2010) Scaling the daytime urban breeze circulation. J Appl Meteorol Climatol 49: 889–901

    Article  Google Scholar 

  • Hsu SA (1983) Measurements of the height of the convective surface boundary layer over an arid coast on the Red Sea. Boundary-Layer Meteorol 26: 391–396

    Article  Google Scholar 

  • Keen CS, Lyons WA (1978) Lake/land breeze circulations on the western shore of Lake Michigan. J Appl Meteorol 17: 1843–1855

    Article  Google Scholar 

  • Knievel JC, Bryan GH, Hacker JP (2007) Explicit numerical diffusion in the WRF model. Mon Wea Rev 135: 3808–3824

    Article  Google Scholar 

  • Levy I, Mahrer Y, Dayan U (2009) Coastal and synoptic recirculation affecting air pollutants dispersion: a numerical study. Atmos Environ 43: 1991–1999

    Article  Google Scholar 

  • Levi Y, Shilo E, Setter I (2011) Climatology of a summer coastal boundary layer with 1290-MHz wind profiler radar and a WRF simulation. J Appl Meteoril Climatol 50: 1815–1826

    Article  Google Scholar 

  • Lundquist KA, Chow FK, Lundquist JK (2010) An immersed boundary method for the Weather Research and Forecasting model. Mon Wea Rev 138: 796–817

    Article  Google Scholar 

  • Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting and impacts. Rev Geophys 41: 1–31

    Article  Google Scholar 

  • Mirocha JD, Lundquist JK, Kosović B (2010) Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF model. Mon Wea Rev 138: 4212–4228

    Article  Google Scholar 

  • Moeng CH, Dudhia J, Klemp J, Sullivan P (2007) Examining two-way grid nesting for large-eddy simulation of the PBL using the WRF model. Mon Wea Rev 135: 2295–2311

    Article  Google Scholar 

  • Niino H (1987) The linear theory of land, and sea breeze circulation. J Meteorol Soc Jpn 65: 901–920

    Google Scholar 

  • Ogawa S, Sha W, Iwasaki T (2003) A numerical study of the interaction of a sea-breeze front with convective cells in the daytime boundary layer. J Meteorol Soc Jpn 81: 635–651

    Article  Google Scholar 

  • Papanastasiou DK, Melas D, Lissaridis I (2010) Study of wind field under sea breeze conditions; an application of WRF model. Atmos Res 98: 102–117

    Article  Google Scholar 

  • Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62: 2078–2097

    Article  Google Scholar 

  • Physick WL (1980) Numerical experiments on the inland penetration of the sea breeze. Q J Roy Meteorol Soc 106: 735–746

    Article  Google Scholar 

  • Porson A, Steyn DG, Schayes G (2007) Sea-breeze scaling from numerical model simulations, part I: pure sea breezes. Boundary-Layer Meteorol 122: 17–29

    Article  Google Scholar 

  • Rao PN, Fuelberg HE, Droegemeier KK (1999) High-resolution modeling of the Cape Canaveral area land-water circulations and associated features. Mon Wea Rev 127: 1808–1821

    Article  Google Scholar 

  • Reible DD, Simpson JE, Linden PF (1993) The sea breeze and gravity-current frontogenesis. Q J Roy Meteorol Soc 119: 1–16

    Article  Google Scholar 

  • Rotunno R, Chen Y, Wang W, Davis CA, Dudhia J, Holland GJ (2009) Large-eddy simulation of an idealized tropical cyclone. Bull Am Meteorol Soc 90: 1783–1788

    Article  Google Scholar 

  • Segal M, Leuthold M, Arritt RW, Anderson C, Shen J (1997) Small lake daytime breezes: some observational and conceptual observations. Bull Am Meteorol Soc 78: 1135–1147

    Article  Google Scholar 

  • Sha W, Kawamura T, Ueda H (1991) A numerical study on sea/land breezes as a gravity current: Kelvin–Helmholtz billows and inland penetration of the sea-breeze front. J Atmos Sci 48: 1649–1665

    Article  Google Scholar 

  • Sha W, Kawamura T, Ueda H (1993) A numerical study of nocturnal sea/land breezes: prefrontal gravity waves in the compensating flow and inland penetration of the sea-breeze cutoff vortex. J Atmos Sci 50: 1076–1088

    Article  Google Scholar 

  • Sha W, Ogawa S, Iwasaki T (2004) A numerical study on the nocturnal frontogenesis of the sea breeze front. J Meteorol Soc Jpn 82: 817–823

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze and local winds. Cambridge University Press, Cambridge

    Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227: 3465–3485

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR/TN-475, 113 pp

  • Soler MR, Arasa R, Merino M, Olid M (2011) Modelling local sea-breeze flow and associated dispersion patterns over a coastal area in north-east Spain: a case study. Boundary-Layer Meteorol 140: 37–56

    Article  Google Scholar 

  • Steyn DG (1998) Scaling the vertical structure of sea breezes. Boundary-Layer Meteorol 86: 505–524

    Article  Google Scholar 

  • Steyn DG (2003) Scaling the vertical structure of sea breezes revisited. Boundary-Layer Meteorol 107: 177–188

    Article  Google Scholar 

  • Tijm ABC, Van Delden AJ, Holtslag AAM (1999) The inland penetration of sea breezes. Contrib Atmos Phys 72: 317–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik T. Crosman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosman, E.T., Horel, J.D. Idealized Large-Eddy Simulations of Sea and Lake Breezes: Sensitivity to Lake Diameter, Heat Flux and Stability. Boundary-Layer Meteorol 144, 309–328 (2012). https://doi.org/10.1007/s10546-012-9721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9721-x

Keywords

Navigation