Boundary-Layer Meteorology

, Volume 136, Issue 2, pp 235–251

Turbulence Spectra and Cospectra Under the Influence of Large Eddies in the Energy Balance EXperiment (EBEX)

  • Yu Zhang
  • Heping Liu
  • Thomas Foken
  • Quinton L. Williams
  • Shuhua Liu
  • Matthias Mauder
  • Claudia Liebethal
Article

DOI: 10.1007/s10546-010-9504-1

Cite this article as:
Zhang, Y., Liu, H., Foken, T. et al. Boundary-Layer Meteorol (2010) 136: 235. doi:10.1007/s10546-010-9504-1

Abstract

During the Energy Balance EXperiment, the patch-by-patch, flood irrigation in a flat cotton field created an underlying surface with heterogeneous soil moisture, leading to a dry (warm)-to-wet (cool) transition within the cotton field under northerly winds. Moreover, the existence of an extremely dry, large bare soil area upstream beyond the cotton field created an even larger step transition from the bare soil region to the cotton field. We investigated the turbulence spectra and cospectra in the atmospheric surface layer (ASL) that was disturbed by large eddies generated over regions upstream and also influenced by horizontal advection. In the morning, the ASL was unstable while in the afternoon a stable internal boundary layer was observed at the site. Therefore, the turbulence data at 2.7 and 8.7 m are interpreted and compared in terms of interactions between large eddies and locally generated turbulence under two atmospheric conditions: the unstable ASL beneath the convective boundary layer (CBL) (hereafter the unstable condition) and the stable ASL beneath the CBL (hereafter the stable condition). We identified the influences of multiple sizes of large eddies on ASL turbulence under both stratifications; these large eddies with multiple sizes were produced over the dry patches and dry, large bare soil areas upstream. As a consequence of the disturbance of large eddies, the broadening, erratic variability, and deviation of spectra and cospectra, relative to those described by Monin–Obukhov similarity theory, are evident in the low- to mid-frequencies. Transfer of momentum, heat, and water vapour by large eddies is distinctly observed from the turbulence cospectra and leads to significant run-to-run variations of residuals of the surface energy balance closure. Our results indicate that these large eddies have greater influences on turbulence at higher levels compared to lower levels, and in the unstable ASL compared to the stable ASL.

Keywords

Energy Balance EXperiment Large eddies Monin–Obukhov similarity theory Turbulence spectra and cospectra 

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yu Zhang
    • 1
  • Heping Liu
    • 1
  • Thomas Foken
    • 2
  • Quinton L. Williams
    • 1
  • Shuhua Liu
    • 3
  • Matthias Mauder
    • 4
  • Claudia Liebethal
    • 2
  1. 1.Department of Physics, Atmospheric Sciences, and GeoscienceJackson State UniversityJacksonUSA
  2. 2.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  3. 3.Department of Atmospheric SciencesPeking UniversityBeijingChina
  4. 4.Karlsruhe Institute of Technology (KIT)Institute of Meteorology and Climate Research (IMK-IFU)Garmisch-PartenkirchenGermany