Boundary-Layer Meteorology

, Volume 118, Issue 2, pp 273–303

Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer


    • Dpt. FísicaUniv. de les Illes Balears
  • A. A. M. Holtslag
    • Meteorology and Air Quality SectionWageningen University
  • R. J. Beare
    • Met Office
  • E. Bazile
    • Météo-France
  • A. Beljaars
    • European Centre for Medium-range Weather Forecast
  • A. Cheng
    • NASA Langley Research Center
  • L. Conangla
    • Dpt. Física AplicadaUniv. Polit‘ecnica de Catalunya
  • M. Ek
  • F. Freedman
  • R. Hamdi
    • IAG G. LemaîtreUniversité Catholique de Louvain
  • A. Kerstein
    • Sandia National Laboratories
  • H. Kitagawa
    • Japan Meteorological Agency
  • G. Lenderink
    • Royal Netherlands Met. InstituteKNMI
  • D. Lewellen
    • West Virginia University
  • J. Mailhot
    • Meteorological Service of Canada
  • T. Mauritsen
    • Dpt. MeteorologyStockholm University
  • V. Perov
    • Swedish Meteorological and Hydrological Institute
  • G. Schayes
    • IAG G. LemaîtreUniversité Catholique de Louvain
  • G-J. Steeneveld
    • Meteorology and Air Quality SectionWageningen University
  • G. Svensson
    • Dpt. MeteorologyStockholm University
  • P. Taylor
    • York University
  • W. Weng
    • York University
  • S. Wunsch
    • Sandia National Laboratories
  • K-M. Xu
    • NASA Langley Research Center

DOI: 10.1007/s10546-005-3780-1

Cite this article as:
Cuxart, J., Holtslag, A.A.M., Beare, R.J. et al. Boundary-Layer Meteorol (2006) 118: 273. doi:10.1007/s10546-005-3780-1


The parameterization of the stably stratified atmospheric boundary layer is a difficult issue, having a significant impact on medium-range weather forecasts and climate integrations. To pursue this further, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes. Statistics from a large-eddy simulation intercomparison made for the same case by eleven different models are used as a guiding reference. The single-column parameterizations include research and operational schemes from major forecast and climate research centres. Results from first-order schemes, a large number of turbulence kinetic energy closures, and other models were used. There is a large spread in the results; in general, the operational schemes mix over a deeper layer than the research schemes, and the turbulence kinetic energy and other higher-order closures give results closer to the statistics obtained from the large-eddy simulations. The sensitivities of the schemes to the parameters of their turbulence closures are partially explored.


GABLSIntercomparisonMixing coefficientsSingle-column modelsStably stratified flowsTurbulence parameterizations

Copyright information

© Springer 2005