Boundary-Layer Meteorology

, Volume 118, Issue 2, pp 273–303

Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer

  • J. Cuxart
  • A. A. M. Holtslag
  • R. J. Beare
  • E. Bazile
  • A. Beljaars
  • A. Cheng
  • L. Conangla
  • M. Ek
  • F. Freedman
  • R. Hamdi
  • A. Kerstein
  • H. Kitagawa
  • G. Lenderink
  • D. Lewellen
  • J. Mailhot
  • T. Mauritsen
  • V. Perov
  • G. Schayes
  • G-J. Steeneveld
  • G. Svensson
  • P. Taylor
  • W. Weng
  • S. Wunsch
  • K-M. Xu
Article

DOI: 10.1007/s10546-005-3780-1

Cite this article as:
Cuxart, J., Holtslag, A.A.M., Beare, R.J. et al. Boundary-Layer Meteorol (2006) 118: 273. doi:10.1007/s10546-005-3780-1

Abstract

The parameterization of the stably stratified atmospheric boundary layer is a difficult issue, having a significant impact on medium-range weather forecasts and climate integrations. To pursue this further, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes. Statistics from a large-eddy simulation intercomparison made for the same case by eleven different models are used as a guiding reference. The single-column parameterizations include research and operational schemes from major forecast and climate research centres. Results from first-order schemes, a large number of turbulence kinetic energy closures, and other models were used. There is a large spread in the results; in general, the operational schemes mix over a deeper layer than the research schemes, and the turbulence kinetic energy and other higher-order closures give results closer to the statistics obtained from the large-eddy simulations. The sensitivities of the schemes to the parameters of their turbulence closures are partially explored.

Keywords

GABLSIntercomparisonMixing coefficientsSingle-column modelsStably stratified flowsTurbulence parameterizations

Copyright information

© Springer 2005

Authors and Affiliations

  • J. Cuxart
    • 1
  • A. A. M. Holtslag
    • 2
  • R. J. Beare
    • 3
  • E. Bazile
    • 4
  • A. Beljaars
    • 5
  • A. Cheng
    • 6
  • L. Conangla
    • 7
  • M. Ek
    • 8
  • F. Freedman
    • 8
  • R. Hamdi
    • 9
  • A. Kerstein
    • 10
  • H. Kitagawa
    • 11
  • G. Lenderink
    • 12
  • D. Lewellen
    • 13
  • J. Mailhot
    • 14
  • T. Mauritsen
    • 15
  • V. Perov
    • 16
  • G. Schayes
    • 9
  • G-J. Steeneveld
    • 2
  • G. Svensson
    • 15
  • P. Taylor
    • 17
  • W. Weng
    • 17
  • S. Wunsch
    • 10
  • K-M. Xu
    • 6
  1. 1.Dpt. FísicaUniv. de les Illes BalearsPalma de MallorcaSpain
  2. 2.Meteorology and Air Quality SectionWageningen UniversityWageningenThe Netherlands
  3. 3.Met OfficeLondonU.K
  4. 4.Météo-FranceToulouseFrance
  5. 5.European Centre for Medium-range Weather ForecastReadingU.K
  6. 6.NASA Langley Research CenterHamptonU.S.A
  7. 7.Dpt. Física AplicadaUniv. Polit‘ecnica de CatalunyaManresaSpain
  8. 8.NOAA-NCEPCamp SpringsU.S.A.
  9. 9.IAG G. LemaîtreUniversité Catholique de LouvainLouvain la neuveBelgium
  10. 10.Sandia National LaboratoriesLivermoreU.S.A
  11. 11.Japan Meteorological AgencyTokyoJapan
  12. 12.Royal Netherlands Met. InstituteKNMIde BiltThe Netherlands
  13. 13.West Virginia UniversityWVU.S.A
  14. 14.Meteorological Service of CanadaQuebecCanada
  15. 15.Dpt. MeteorologyStockholm UniversityStockholmSweden
  16. 16.Swedish Meteorological and Hydrological InstituteNorrkopingSweden
  17. 17.York UniversityYorkCanada