Skip to main content
Log in

The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

An Erratum to this article was published on 16 June 2015

Abstract

Background

The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood.

Aims

To evaluate the complex clinical phenotype of OAD and UCD patients at different ages.

Results

Acquired microcephaly and movement disorders were common in OAD and UCD highlighting that the brain is the major organ involved in these diseases. Cardiomyopathy [methylmalonic (MMA) and propionic aciduria (PA)], prolonged QTc interval (PA), optic nerve atrophy [MMA, isovaleric aciduria (IVA)], pancytopenia (PA), and macrocephaly [glutaric aciduria type 1 (GA1)] were exclusively found in OAD patients, whereas hepatic involvement was more frequent in UCD patients, in particular in argininosuccinate lyase (ASL) deficiency. Chronic renal failure was often found in MMA, with highest frequency in mut0 patients. Unexpectedly, chronic renal failure was also observed in adolescent and adult patients with GA1 and ASL deficiency. It had a similar frequency in patients with or without a movement disorder suggesting different pathophysiology. Thirteen patients (classic OAD: 3, UCD: 10) died during the study interval, ten of them during the initial metabolic crisis in the newborn period. Male patients with late-onset ornithine transcarbamylase deficiency were presumably overrepresented in the study population.

Conclusions

Neurologic impairment is common in OAD and UCD, whereas the involvement of other organs (heart, liver, kidneys, eyes) follows a disease-specific pattern. The identification of unexpected chronic renal failure in GA1 and ASL deficiency emphasizes the importance of a systematic follow-up in patients with rare diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARG1:

Arginase 1

ASL:

Argininosuccinate lyase

ASS:

Argininosuccinate synthetase

CPS1:

Carbamylphosphate synthetase 1

E-IMD:

European registry and network for intoxication type metabolic diseases

GA1:

Glutaric aciduria type 1

HHH:

Hyperornithinemia-hyperammonemia-homocitrullinuria

IVA:

Isovaleric aciduria

MMA:

Methylmalonic aciduria (isolated forms)

NAGS:

N-acetylglutamate synthase

OAD:

Organic aciduria

OTC:

Ornithine transcarbamylase

PA:

Propionic acidurias

SDS:

Standard deviation score

UCD:

Urea cycle disorder

References

  • Ah Mew N, Krivitzky L, McCarter R, Batshaw M, Tuchman M (2013) Urea Cycle Disorders Consortium of the Rare Diseases Clinical Research Network. Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ. J Pediatr 162:324–329

    Article  CAS  PubMed  Google Scholar 

  • Baric I, Wagner L, Feyh P, Liesert M, Buckel W, Hoffmann GF (1999) Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. J Inherit Metab Dis 22:867–881

    Article  CAS  PubMed  Google Scholar 

  • Baruteau J, Hargreaves I, Krywawych S et al (2014) Successful reversal of propionic acidemia associated cardiomyopathy: evidence of low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. doi:10.1016/j.mito.2014.07.001

    PubMed  Google Scholar 

  • Batshaw ML, MacArthur RB, Tuchman A (2001) Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr 138:S46–S54

    Article  CAS  PubMed  Google Scholar 

  • Boy N, Haege G, Heringer J et al (2013) Low lysine diet in glutaric aciduria type I – effect on anthropometrical and biochemical follow-up parameters. J Inherit Metab Dis 36:525–533

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612

    Article  CAS  PubMed  Google Scholar 

  • Brunengraber H, Roe CR (2006) Anaplerotic molecules: current and future. J Inherit Metab Dis 29:327–331

    Article  PubMed  Google Scholar 

  • Butterworth RF (2014) Pathophysiology of brain dysfunction in hyperammonemic syndromes: the many faces of glutamine. Mol Genet Metab. doi:10.1016/j.ymgme.2014.06.003

    PubMed  Google Scholar 

  • Cavicchi C, Donati M, Parini R et al (2014) Sudden unexpected fatal encephalopathy in adults with OTC gene mutations — clues for early diagnosis and treatment. Orphanet J Rare Dis 9:105

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, DiMauro S, Venditti CP (2009) Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J 23:1252–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman KA, Gropman A, MacLeod E et al (2012) Acute management of propionic acidemia. Mol Genet Metab 105:16–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cole TJ (1990) The LMS method for constructing normalized growth standards. Eur J Clin Nutr 44:45–60

    CAS  PubMed  Google Scholar 

  • Cole TJ, Freeman JV, Preece MA (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Statist Med 17:407–429

    Article  CAS  Google Scholar 

  • Cole TJ, Williams AF, Wright CM (2011) Revised birth centiles for weight, length and head circumference in the UK-WHO growth charts. Ann Hum Biol 38:7–11

    Article  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria, http://CRAN.R-project.org/

  • Cosson MA, Benoist JF, Touati G et al (2009) Long-term outcome in methylmalonic aciduria: a series of 30 French patients. Mol Genet Metab 97:172–178

    Article  CAS  PubMed  Google Scholar 

  • Coude FX, Sweetman L, Nyhan WL (1979) Inhibition of propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest 64:1544–1551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Keyzer Y, Valayannopoulos V, Benoist JF et al (2009) Multiple OXPHOS deficiency in liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95

    Article  PubMed  Google Scholar 

  • Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab 23:263–274

    Article  PubMed  Google Scholar 

  • Enns GM, Berry SA, Berry BT, Rhead WJ, Brusilow SW, Hamosh A (2007) Survival after treatment with phenylacetate and benzoate for urea cycle disorders. N Engl J Med 356:2282–2292

    Article  CAS  PubMed  Google Scholar 

  • Ensenauer R, Vockley J, Willard JM et al (2004) A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 75:1136–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erez A, Nagamani SC, Shchelochkov OA et al (2011) Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med 17:1619–1626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garbade SF, Greenberg CR, Demirkol M et al (2014) Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models — a cohort study in 180 patients. J Inherit Metab Dis. doi:10.1007/s10545-014-9676-9

    PubMed  Google Scholar 

  • Gitiaux C, Roze E, Kinugawa K et al (2008) Spectrum of movement disorders associated with glutaric aciduria type 1: a study of 16 patients. Mov Disord 23:2392–2397

    Article  PubMed  Google Scholar 

  • Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC (1975) Glutaric aciduria: a “new” disorder of amino acid metabolism. Biochem Med 12:12–21

    Article  CAS  PubMed  Google Scholar 

  • Gropman A (2010) Brain imaging in urea cycle disorders. Mol Genet Metab 100(Suppl 1):S20–S30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grünert SC, Wendel U, Lindner M et al (2012) Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J Rare Dis 7:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Grünert SC, Müllerleile S, De Silva L et al (2013) Propionic acidemia: clinical course and outcome in 55 pediatric and adolescent patients. Orphanet J Rare Dis 8:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Hagos Y, Krick W, Braulke T, Mühlhausen C, Burckhardt G, Burckhardt BC (2008) Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflugers Arch 457:225–231

    Article  Google Scholar 

  • Harting I, Neumaier-Probst E, Seitz A et al (2009) Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain 132:1764–1782

    Article  PubMed  Google Scholar 

  • Hassel B, Brathe A, Petersen D (2002) Cerebral dicarboxylate transport and metabolism studied with isotopically labeled fumarate, malate, and malonate. J Neurochem 82:410–419

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Viña JR (2006) Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136(Suppl 1):218S–226S

    CAS  PubMed  Google Scholar 

  • Hayasaka K, Metoki K, Satoh T et al (1982) Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic and methylmalonic acidemia: a reduction of cytochrome c oxidase activity. Tohoku J Exp Med 137:329–334

    Article  CAS  PubMed  Google Scholar 

  • Heringer J, Boy SP, Ensenauer R et al (2010) Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol 68:743–752

    Article  PubMed  Google Scholar 

  • Herskovitz M, Goldsher D, Sela BA, Mandel H (2013) Subependymal mass lesions and peripheral polyneuropathy in adult-onset glutaric aciduria type I. Neurology 81:849–850

    Article  PubMed  Google Scholar 

  • Hörster F, Baumgartner MR, Viardot C et al (2007) Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut, cblA, cblB). Pediatr Res 62:225–230

    Article  PubMed  Google Scholar 

  • Hörster F, Garbade SF, Zwickler T et al (2009) Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters. J Inherit Metab Dis 32:630–639

    Article  PubMed  Google Scholar 

  • Jamuar SS, Newton SA, Prabhu SP et al (2012) Rhabdomyolysis, acute renal failure, and cardiac arrest secondary to status dystonicus in a child with glutaric aciduria type I. Mol Genet Metab 106:488–490

    Article  CAS  PubMed  Google Scholar 

  • Kölker S, Dobbelaere D, Häberle J et al (accepted) Networking across borders for individuals with organic acidurias and urea cycle disorders: the E-IMD consortium. J Inherit Metab Dis

  • Kölker S, Garcia Cazorla A, Valayannopoulos V et al (submitted) The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis

  • Kölker S, Garbade SF, Greenberg CR et al (2006a) Natural history, outcome, and therapeutic efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res 59:840–847

    Article  PubMed  Google Scholar 

  • Kölker S, Sauer SW, Surtees RA, Leonard JV (2006b) The aetiology of neurological complications of organic acidaemias – a role for the blood–brain barrier. J Inherit Metab Dis 29:701–704

    Article  PubMed  Google Scholar 

  • Kölker S, Garbade SF, Boy N et al (2007) Decline of acute encephalopathic crises in children with glutaryl-CoA dehydrogenase deficiency identified by newborn screening in Germany. Pediatr Res 62:357–362

    Article  PubMed  Google Scholar 

  • Kölker S, Christensen E, Leonard JV et al (2011) Diagnosis and management of glutaric aciduria type I — revised recommendations. J Inherit Metab Dis 34:677–694

    Article  PubMed Central  PubMed  Google Scholar 

  • Kölker S, Burgard P, Sauer SW, Okun JG (2013) Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis 36:635–644

    Article  PubMed  Google Scholar 

  • Komatsuzaki S, Sakamoto O, Fuse N, Uematsu M, Matsubara Y, Ohura T (2012) Clinical reasoning: a young man with progressive subcortical lesions and optic nerve atrophy. Neurology 79:e63–68 doi: 10.1212/WNL.0b013e3182648bb6

  • Lamp J, Keyser B, Koeller DM, Ullrich K, Braulke T, Mühlhausen C (2011) Glutaric aciduria type 1 metabolites impair succinate transport from astrocytic to neuronal cells. J Biol Chem 286:17777–17784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marquard J, El Scheich T, Klee D, Schmitt M, Meissner T, Mayatepek E, Oh J (2011) Chronic pancreatitis in branched-chain organic acidurias — a case of methylmalonic aciduria and an overview of the literature. Eur J Pediatr 170:241–245

    Article  PubMed  Google Scholar 

  • Mercimek-Mahmutoglu S, Moeslinger D, Häberle J et al (2010) Long-term outcome of patients with argininosuccinate lyase deficiency diagnosed by newborn screening in Austria. Mol Genet Metab 100:24–28

    Article  CAS  PubMed  Google Scholar 

  • Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31:44–54

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GA, Gauthier N, Lesimple A, Wang SP, Mamer O, Qureshi I (2008) Hereditary and acquired diseases of acyl-coenzyme A metabolism. Mol Genet Metab 94:4–15

    Article  CAS  PubMed  Google Scholar 

  • Morath MA, Okun JG, Müller IB, Sauer SW, Hörster F, Hoffmann GF, Kölker S (2008) Neurodegeneration and chronic renal failure in methylmalonic aciduria - a pathophysiological approach. J Inherit Metab Dis 31:35–43

  • Mori T, Nagai K, Mori M, Nagao M, Imamura M, Iijima M, Kobayashi K (2002) Progressive liver fibrosis in late-onset argininosuccinate lyase deficiency. Pediatr Dev Pathol 5:597–601

    Article  PubMed  Google Scholar 

  • Mustafa A, Clarke JT (2006) Ornithine transcarbamylase deficiency presenting with acute liver failure. J Inherit Metab Dis 29:586

    Article  PubMed  Google Scholar 

  • Nagamani SC, Shchelochkov OA, Mullins MA et al (2012) A randomized controlled trial to evaluate the effects of high-dose versus low-dose of arginine therapy on hepatic function tests in argininosuccinate acidurias. Mol Genet Metab 107:315–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nassogne MC, Héron B, Touati G, Rabier D, Saudubray JM (2005) Urea cycle defects: management and outcome. J Inherit Metab Dis 28:407–414

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NHT, Morland C, Gonzalez SV et al (2007) Propionate increases neuronal histone acetylation, but is metabolized oxidatively via glia. Relevance for propionic acidemia. J Neurochem 101:806–814

    Article  CAS  PubMed  Google Scholar 

  • Nizon M, Ottolenghi C, Valayannopoulos V et al (2013) Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis 8:148

    Article  PubMed Central  PubMed  Google Scholar 

  • Pena L, Franks J, Chapman KA et al (2012) Natural history of propionic acidemia. Mol Genet Metab 105:5–9

    Article  CAS  PubMed  Google Scholar 

  • Pöge AP, Autschbach F, Korall H, Trefz FK, Mayatepek E (1997) Early manifestation of glutaric aciduria type I and nephrotic syndrome during the first months of life. Acta Paediatr 86:1144–1147

    Article  PubMed  Google Scholar 

  • Prada CE, Al Jasmi F, Kirk EP, Hopp M, Jones O, Leslie ND, Burrow TA (2011) Cardiac disease in methylmalonic acidemia. J Pediatr 159:862–864

    Article  PubMed  Google Scholar 

  • Romano S, Valayannopoulos V, Touati G et al (2010) Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr 156:128–134

    Article  PubMed  Google Scholar 

  • Rüegger CM, Lindner M, Ballhausen D et al (2014) Cross-sectional observational study of 208 patients with non-classical urea cycle disorders. J Inherit Metab Dis 37:31–30

    Article  Google Scholar 

  • Sauer SW, Okun JG, Schwab MA et al (2005) Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a role for glutaryl-coenzyme A. J Biol Chem 280:21830–21836

    Article  CAS  PubMed  Google Scholar 

  • Sauer SW, Opp S, Mahringer A et al (2010) Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood–brain barrier and the choroid plexus. Biochim Biophys Acta 1802:552–560

    Article  CAS  PubMed  Google Scholar 

  • Schwab MA, Sauer SW, Okun JG et al (2006) Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 398:107–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seminara J, Tuchman M, Krivitzky L et al (2010) Establishing a consortium for the study of rare diseases: The Urea Cycle Disorders Consortium. Mol Genet Metab 100(Suppl 1):S97–105

  • Serrano M, Martins C, Pérez-Dueñas B et al (2010) Neuropsychiatric manifestation in late-onset urea cycle disorder patients. J Child Neurol 25:352–358

    Article  PubMed  Google Scholar 

  • Sokoloff L (1960) The metabolism of the central nervous system in vivo. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology, Sect 1, Vol II. Raven, New York, 161–168

  • Stellmer F, Keyser B, Burckhardt BC et al (2007) 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J Mol Med (Berl) 85:763–770

    Article  CAS  Google Scholar 

  • Strauss KA, Lazovic J, Wintermark M, Morton DH (2007) Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain 130:1905–1920

    Article  PubMed  Google Scholar 

  • Strauss KA, Donnelly P, Wintermark M (2010) Cerebral hemodynamics in patients with glutaryl-coenzyme A dehydrogenase deficiency. Brain 133:76–92

    Article  PubMed  Google Scholar 

  • Strobl R, Dirschedl P (2004) Comparison of simultaneous and pointwise confidence intervals for survival functions. Biomet J 46(Suppl 1):90

  • Summar ML, Dobbelaere D, Brusilow S, Lee B (2008) Diagnosis, symptoms, frequency and mortality of 260 patients with urea cycle disorders from a 21-year, multicenter study of acute hyperammaemic episodes. Acta Paediatr 97:1420–1425

    Article  PubMed Central  PubMed  Google Scholar 

  • Takanashi J, Barkovich AJ, Cheng SF et al (2003) Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. Am J Neuroradiol 24:1184–1187

    PubMed  Google Scholar 

  • Teufel U, Weitz J, Flechtenmacher C et al (2011) High urgency liver transplantation in ornithine transcarbamylase deficiency presenting with acute liver failure. Pediatr Transpl 15:E110–E115

    Google Scholar 

  • Therneau T (2014) A package for survival analysis in S. R package version 2.37-7, http://CRAN.R-project.org/package=survival

  • Thies B, Meyer-Schwesinger C, Lamp J et al (2013) Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1. Biochim Biophys Acta 1832:1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Traber G, Baumgartner MR, Schwarz U, Pangalu A, Donath MY, Landau K (2011) Subacute bilateral visual loss in methylmalonic acidurias. J Neuroophthalmol 31:344–346

    Article  PubMed  Google Scholar 

  • Tuchman M, Lee B, Lichter-Konecki U et al (2008) Cross-sectional multicentre study of patients with urea cycle disorders in the United States. Mol Genet Metab 94:397–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams ZR, Hurley PE, Altiparmak UE, Feldon SE, Arnold GL, Eggenberger E, Mejico LJ (2009) Late onset optic neuropathy in methylmalonic and propionic acidemia. Am J Ophthalmol 147:929–933

    Article  CAS  PubMed  Google Scholar 

  • Yapito-Lee J, Chow CW, Boneh A (2013) Histopathological findings in livers of patients with urea cycle disorders. Mol Genet Metab 108:161–165

    Article  Google Scholar 

  • Zinnanti WJ, Lazovic J, Housman C et al (2007) Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. J Clin Invest 117:3258–3270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to all patients and their families who have been willing to contribute to this study, to share their experience on living with a rare disease, and for their trust, and we thank all colleagues very much for their contribution to the project. We are grateful for fruitful collaboration with the following clinical partners, patient support groups and industrial partners (in alphabetical order of countries): Lut de Baere, Nathalie Stroobant (Belgische Organisatie voor Kinderen en Volwassenen met een Stofwisselingsziekte VZW [BOKS], Belgium), Nela Carić (Hrvatska udruga za rijetke bolesti, Croatia), Veronika Dvorakova (Charles University and General University of Prague, First Faculty of Medicine, Prague, Czech Republic), Annika and Kennet Rovsing (PND – Protein Nedbrydnings Defekt Foreningen, Denmark), Samantha Parker (Orphan Europe SARL, France), EURORDIS, European Organisation for Rare Disease (France), Erich Bauchart (Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France), Markus Ott, Beate Szczerbak (Nutricia Metabolics GmbH, Germany), Hubertus von Voss, Raimund Schmid (Kindernetzwerk e. V., Germany), Mandy Kretschmer (Glutarazidurie e. V., Germany), Reinhild Link (Wiesbaden, representing the SSIEM Dieticians Group), Persephone Augoustides-Savvopoulou (University A’Pediatric Department, Metabolic Laboratory, ‘Hippocration’ General Hospital of Thessaloniki), Zarifis Dimitroulis (KRIKOS ZOIS – Society for patients and friends of patients with inherited metabolic diseases), Evridiki Drogari (University of Athens, Aghia Sophia Children’s Hospital, Unit of Metabolic Diseases, Athens), Renza Barbon Galluppi (UNIAMO FIMR, Italy), Susan Udina (COMETA ASMME – Associazione Studio Malattie Metaboliche Ereditarie – ONLUS, Italy), Hanka Meutgeert (Volwassenen en Kinderen met Stoffwisselingsziekten [VKS], Netherlands), Vanessa Ferreira (Associação Portuguesa CDG, Portugal), Miguel Macedo (Apofen, Portugal), Sérgio Braz Antão (Rarrisimas, Portugal), Sergi Faber (Catalana de Trastorns Metabòlics Hereditaris, Spain), Sofia Nordin (Svedish Orphan Biovitrium AB [SOBI], Sweden), Steven Hannigan (CLIMB, Children Living with Inherited Metabolic Diseases, National Information Centre for Metabolic Diseases, and EMDA, the European Metabolic Disorders Alliance) and Robin Lachmann (National Hospital for Neurology and Neurosurgery, Charles Dent Metabolic Unit, London, United Kingdom).

This publication arises from the project “European registry and network for intoxication type metabolic diseases” (E-IMD; EAHC no 2010 12 01) which has received funding from the European Union, in the framework of the Health Programme. After the end of the EU funding period the E-IMD patient registry has been sustained by funding from the Kindness-for-Kids Foundation (Munich, Germany) and the Dietmar Hopp Foundation (St. Leon-Rot, Germany).

M. Baumgartner and J. Häberle (Zurich, Switzerland) are supported by radiz – Rare Disease Initiative Zurich, a clinical research priority program of the University of Zurich.

Drs Murphy and Lachmann were supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre

Compliance with ethics guidelines

Conflict of interest

None.

Human and animal rights and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human studies (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients or their legal guardians prior to being included in the study in countries where this was needed by law. This article does not contain animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kölker.

Additional information

Communicated by: K. Michael Gibson

For a complete list of affiliations of all authors see end of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Growth: the impact of age at disease onset (DOCX 39 kb)

Supplementary Table 2

Growth: the impact of movement disorders (DOCX 37 kb)

Supplementary Table 3

Movement disorder (DOCX 35 kb)

Supplementary Table 4

Laboratory tests evaluating the liver (DOCX 38 kb)

Supplementary Table 5

Whole blood cell count (DOCX 37 kb)

Supplementary Table 6

Synopsis of organ-specific manifestations in OAD and UCD patients (DOCX 30 kb)

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kölker, S., Valayannopoulos, V., Burlina, A.B. et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis 38, 1059–1074 (2015). https://doi.org/10.1007/s10545-015-9840-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9840-x

Keywords

Navigation