Skip to main content
Log in

Lipidomic analysis of cerebrospinal fluid by mass spectrometry–based methods

  • Complex Lipids
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Lipids are natural substances found in all living organisms. Essential to the integrity of cell membranes, they also have many biological functions linked to energy storage and cell signaling, and are involved in a large number of heterogeneous diseases such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Lipids are challenging to analyze because of their huge structural diversity and numerous species. Up to now, lipid analysis has been achieved by targeted approaches focusing on selected families and relying on extraction protocols and chromatographic methods coupled to various detectors including mass spectrometry. Thanks to the technological improvements achieved in the fields of chromatography, high-resolution mass spectrometry and bioinformatics, it is possible to perform global lipidomic analyses enabling the concomitant detection, identification and relative quantification of many lipid species belonging to different families. The aim of this review is to focus on mass spectrometry–based methods to perform lipid and lipidomic analyses and on their application to the analysis of cerebrospinal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD :

Alzheimer’s disease

APCI :

Atmospheric pressure chemical ionization

APPI :

Atmospheric pressure photoionization

CE-MS :

Capillary electrophoresis-mass spectrometry

CID :

Collision-induced dissociation

CNS :

Central nervous system

CSF :

Cerebrospinal fluid

DESI :

Desorption electrospray ionization

ESI :

Electrospray ionization

GC :

Gas chromatography

HCD :

Higher energy collisional dissociation

IM-MS :

Ion mobility-mass spectrometry

LC-MS :

Liquid chromatography-mass spectrometry

LC-MS/MS :

Liquid chromatography tandem mass spectrometry

LMSD :

LIPID MAPS Structure Database

MALDI :

Matrix-assisted laser desorption ionization

MCI :

Mild cognitive impairment

MS :

Mass spectrometry

MSI :

Mass spectrometry imaging

MTBE :

Methyl tert-butyl ether

NPLC :

Normal phase-liquid chromatography

RPLC :

Reversed phase-liquid chromatography

SFC-MS :

Supercritical fluid chromatography-mass spectrometry

SIMS :

Secondary ion mass spectrometry

TLC :

Thin-layer chromatography

TOF :

Time-of-flight

References

  • Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and Lipidomics in brain injury diseases. AAPS J 8:E314–321

    PubMed Central  PubMed  Google Scholar 

  • Allan D, Cockcroft S (1982) A modified procedure for thin-layer chromatography of phospholipids. J Lipid Res 23:1373–1374

    CAS  PubMed  Google Scholar 

  • Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease–a review. J Lipid Res 49:1157–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bamba T, Lee JW, Matsubara A, Fukusaki E (2012) Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 1250:212–219

    CAS  PubMed  Google Scholar 

  • Benabdellah F, Seyer A, Quinton L, Touboul D, Brunelle A, Laprévote O (2010) Mass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolution by TOF–SIMS. Anal Bioanal Chem 396:151–162

    CAS  PubMed  Google Scholar 

  • Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39(2):82–91

  • Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011a) Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal Chem 83:940–949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011b) Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: focus on triglyceride detection and characterization. Anal Chem 83:6648–6657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird SS, Marur VR, Stavrovskaya IG, Kristal BS (2012) Separation of cis-trans phospholipid isomers using reversed phase LC with high resolution MS detection. Anal Chem 84:5509–5517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird SS, Marur VR, Stavrovskaya IG, Kristal BS (2013) Qualitative characterization of the rat liver mitochondrial lipidome using LC-MS profiling and High Energy Collisional Dissociation (HCD) all ion fragmentation. Metabolomics 9:67–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Björkhem I, Lövgren-Sandblom A, Leoni V et al (2013) Oxysterols and Parkinson’s disease: evidence that levels of 24S-hydroxycholesterol in cerebrospinal fluid correlates with the duration of the disease. Neurosci Lett 555:102–105

    PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Bondia-Pons I, Castellote AI, López-Sabater MC (2004) Comparison of conventional and fast gas chromatography in human plasma fatty acid determination. J Chromatogr B Anal Technol Biomed Life Sci 809:339–344

    CAS  Google Scholar 

  • Bou Khalil M, Hou W, Zhou H et al (2010) Lipidomics era: accomplishments and challenges. Mass Spectrom Rev 29:877–929

    PubMed  Google Scholar 

  • Bouchon B, Portoukalian J, Madec AM, Orgiazzi J (1990) Evidence for several cell populations in human thyroid with distinct glycosphingolipid patterns. Biochim Biophys Acta 1051:1–5

    CAS  PubMed  Google Scholar 

  • Christie WW (1985) Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res 26:507–512

    CAS  PubMed  Google Scholar 

  • Christie WW (1989) Gas chromatography and lipids: a practical guide. The Oil Press Ltd

  • Colsch B, Afonso C, Turpin JC, Portoukalian J, Tabet JC, Baumann N (2008) Sulfogalactosylceramides in motor and psycho-cognitive adult metachromatic leukodystrophy: relations between clinical, biochemical analysis and molecular aspects. Biochim Biophys Acta 1780:434–440

    CAS  PubMed  Google Scholar 

  • Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Detection technologies. Ambient Mass Spectrom Sci 311:1566–1570

    CAS  Google Scholar 

  • Cornett DS, Reyser ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833

    CAS  PubMed  Google Scholar 

  • Desnick RJ, Schuchman EH (2002) Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 3:954–966

    CAS  PubMed  Google Scholar 

  • Ejsing CS, Sampaio JL, Surendranath V et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106:2136–2141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enriquez-Algeciras M, Bhattacharya SK (2013) Lipidomic mass spectrometry and its application in neuroscience. World J Biol Chem 24:102–110

    Google Scholar 

  • Fahy E, Subramaniam S, Brown HA et al (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    PubMed Central  PubMed  Google Scholar 

  • Fan M, Sidhu R, Fujiwara H et al (2013) Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling. J Lipid Res 54:2800–2814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farias SE, Heidenreich KA, Wohlauer MV, Murphy RC, Moore EE (2011) Lipid mediators in cerebral spinal fluid of traumatic brain injured patients. J Trauma 71:1211–1218

    CAS  PubMed  Google Scholar 

  • Farwanah H, Kolter T, Sandhoff K (2011) Mass spectrometric analysis of neutral sphingolipids: methods, applications, and limitations. Biochim Biophys Acta 1811:854–860

    CAS  PubMed  Google Scholar 

  • Fauland A, Köfeler H, Trötzmüller M et al (2011) A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. J Lipid Res 52:2314–2322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

  • Fonteh AN, Chiang J, Cipolla M et al (2013) Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J Lipid Res 54:2884–2897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonteh AN, Cipolla M, Chiang J, Arakaki X, Harrington MG (2014) Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS One 9:e100519

    PubMed Central  PubMed  Google Scholar 

  • Fuchs B, Suss R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49:450–475

    CAS  PubMed  Google Scholar 

  • Fuchs B, Süss R, Teuber K, Eibisch M, Schiller J (2011) Lipid analysis by thin layer chromatography—a review of the current state. J Chromatogr A 1218:2754–2774

    CAS  PubMed  Google Scholar 

  • Gaudin M, Imbert L, Libong D et al (2012) Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies. J Am Soc Mass Spectrom 23:869–879

    CAS  PubMed  Google Scholar 

  • Gonzalo H, Brieva L, Tatzber F et al (2012) Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 123:622–34

    CAS  PubMed  Google Scholar 

  • Gu J, Tifft CJ, Soldin SJ (2008) Simultaneous quantification of GM1 and GM2 gangliosides by isotope dilution tandem mass spectrometry. Clin Biochem 41:413–417

    CAS  PubMed  Google Scholar 

  • Guan Z, Grünler J, Piao S, Sindelar PJ (2001) Separation and quantitation of phospholipids and their ether analogues by high-performance liquid chromatography. Anal Biochem 297:137–43

    CAS  PubMed  Google Scholar 

  • Guittard J, Hronowski XL, Costello CE (1999) Direct matrix-assisted laser desorption/ionization mass spectrometric analysis of glycosphingolipids on thin layer chromatographic plates and transfer membranes. Rapid Commun Mass Spectrom 13:1838–1849

    CAS  PubMed  Google Scholar 

  • Guo Y, Wang X, Qiu L et al (2012) Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clin Chim Acta 414:135–141

    CAS  PubMed  Google Scholar 

  • Gutnikov G (1995) Fatty acids profiles of lipids samples. J Chromatogr B Biomed Appl 671:71–89

    CAS  PubMed  Google Scholar 

  • Hamilton RJ (1975) Qualitative and quantitative gas liquid chromatography of triglycerides. J Chromatogr Sci 13:474–478

    CAS  PubMed  Google Scholar 

  • Han X (2010) Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer’s disease. Biochim Biophys Acta 1801:774–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Gross RW (1994) Electrospray ionization mass spectrometric analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91:10635–10639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295:88–100

    CAS  PubMed  Google Scholar 

  • Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079

    CAS  PubMed  Google Scholar 

  • Han X, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteome 2:253–264

    CAS  Google Scholar 

  • Han X, Gubitosi-Klug RA, Collins BJ, Gross RW (1996) Alterations in individual molecular species of human platelet phospholipids during thrombin stimulation: electrospray ionization mass spectrometry-facilitated identification of the boundary conditions for the magnitude and selectivity of thrombin-induced platelet phospholipid hydrolysis. Biochemistry 35:5822–5832

    CAS  PubMed  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77:1168–1180

    CAS  PubMed  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr, Kelley J (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    CAS  PubMed  Google Scholar 

  • Han X, Fagan AM, Cheng H, Morris JC, Xiong C, Holtzman DM (2003) Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia. Ann Neurol 54:115–119

    CAS  PubMed  Google Scholar 

  • Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haughey NJ, Bandaru VV, Bae M, Mattson MP (2010) Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta 1801:878–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • He H, Conrad CA, Nilsson CL et al (2007) Method for lipidomic analysis: p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Anal Chem 79:8423–8430

    CAS  PubMed  Google Scholar 

  • Houjou T, Yamatani K, Imagawa M, Shimizu T, Taguchi R (2005) A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19:654–666

    CAS  PubMed  Google Scholar 

  • Houtkooper RH, Turkenburg M, Poll-The BT et al (2009a) The enigmatic role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta 1788:2003–2014

    CAS  PubMed  Google Scholar 

  • Houtkooper RH, Rodenburg RJ, Thiels C et al (2009b) Cardiolipin and monolysocardiolipin analysis in fibroblasts, lymphocytes, and tissues using high-performance liquid chromatography-mass spectrometry as a diagnostic test for Barth syndrome. Anal Biochem 387:230–237

    CAS  PubMed  Google Scholar 

  • Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:587–599

    CAS  PubMed  Google Scholar 

  • Hsueh YH, Huang JL, Tseng MC, Her GR (2010) Sensitivity improvement of CE/ESI/MS analysis of gangliosides using a liquid-junction/low-flow interface. Electrophoresis 31:1138–43

    CAS  PubMed  Google Scholar 

  • Hu C, van Dommelen J, van der Heijden R et al (2008) RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. J Proteome Res 7:4982–4991

    CAS  PubMed  Google Scholar 

  • Illingworth DR, Glover J (1971) The composition of lipids in cerebrospinal fluid of children and adults. J Neurochem 18:769–776

    CAS  PubMed  Google Scholar 

  • Irani DN (2009) Cerebrospinal fluid in clinical practice. Saunders-Elsevier, Philadelphia

    Google Scholar 

  • Jackson SN, Wang HY, Woods AS (2005) Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem 77:4523–4527

    CAS  PubMed  Google Scholar 

  • Jackson SN, Ugarov M, Post JD et al (2008) A study of phospholipids by ion mobility TOFMS. J Am Soc Mass Spectrom 19:1655–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang R, Kim KH, Zaidi SA, Cheong WJ, Moon MH (2011) Analysis of phospholipids using an open-tubular capillary column with a monolithic layer of molecularly imprinted polymer in capillary electrochromatography-electrospray ionization-tandem mass spectrometry. Electrophoresis 32:2167–2173

    CAS  PubMed  Google Scholar 

  • Jumpertz R, Guijarro A, Pratley RE, Mason CC, Piomelli D, Krakoff J (2012) Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism. PLoS One 7:e41503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junot C, Fenaille F, Colsch B, Becher F (2013) High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev. doi:10.1002/mas.21401

    PubMed  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    CAS  PubMed  Google Scholar 

  • Katajamaa M, Miettinen J, Oresic M (2006) MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    CAS  PubMed  Google Scholar 

  • Kelley RI, Cheatham JP, Clark BJ et al (1991) X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 119:738–47

    CAS  PubMed  Google Scholar 

  • Klein TR, Kitsch D, Kaufmann R, Riesner D (1998) Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol Chem 379:655–666

    CAS  PubMed  Google Scholar 

  • Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811:935–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolter T, Sandhoff K (2006) Sphingolipid metabolism disease. Biochim Biophys Acta 1758:2057–2079

    CAS  PubMed  Google Scholar 

  • Korecka M, Clarck CM, Lee VM, Trojanowski JQ, Shaw LM (2010) Simultaneous HPLC-MS-MS quantification of 8-iso-PGF(2alpha) and 8,12-iso-iPF(2alpha) in CSF and brain tissue samples with on-line cleanup. J Chromatogr B Anal Technol Biomed Life Sci 878:2209–2216

    CAS  Google Scholar 

  • Kosicek M, Kirsch S, Bene R et al (2010) Nano-HPLC-MS analysis of phospholipids in cerebrospinal fluid of Alzheimer’s disease patients–a pilot study. Anal Bioanal Chem 398:2929–37

    CAS  PubMed  Google Scholar 

  • Kosicek M, Zetterberg H, Andreasen N, Peter-Katalinic J, Hecimovic S (2012) Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer’s disease. Neurosci Lett 516:302–305

    CAS  PubMed  Google Scholar 

  • Lamari F, Mochel F, Sedel F, Saudubray JM (2013) Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: torward a new category of inherited metabolic diseases. J Inherit Metab Dis 36:411–425

    CAS  PubMed  Google Scholar 

  • Lee JY, Min HK, Moon MH (2011) Simultaneous profiling of lysophospholipids and phospholipids from human plasma by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 400:2953–2961

    CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Stoll MS, Minkler PE, Hoppel CL (2000) Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography. Anal Biochem 285(2):246–254

  • Li YL, Gross ML, Hsu FF (2005) Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 16:679–682

    CAS  PubMed  Google Scholar 

  • Li F, Qin X, Chen H et al (2013a) Lipid profiling for early diagnosis and progression of colorectal cancer using direct-infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 27:24–34

    PubMed  Google Scholar 

  • Li M, Feng B, Liang Y et al (2013b) Lipid profiling of human plasma from peritoneal dialysis patients using an improved 2D (NP/RP) LC-QToF MS method. Anal Bioanal Chem 405:6629–6638

    CAS  PubMed  Google Scholar 

  • Lísa M, Cífková E, Holčapek M (2011) Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J Chromatogr A 1218:5146–5156

    PubMed  Google Scholar 

  • Löfgren L, Ståhlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI (2012) The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res 53:1690–1700

    PubMed Central  PubMed  Google Scholar 

  • Malins DC, Mangold HK (1960) Analysis of complex lipid mixtures by thin-layer chromatography and complementary methods. J Am Oil Chem Soc 37:576–578

    CAS  Google Scholar 

  • Mapstone M, Cheema AK, Fiandaca MS et al (2014) Plasma phospholipids identify antecedent memory impairement in older adults. Nat Med 20:415–418

    CAS  PubMed  Google Scholar 

  • Matyash V, Liebisch V, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224

    CAS  PubMed  Google Scholar 

  • Mielke MM, Bandaru VV, McArthur JC, Chu M, Haughey NJ (2010) Disturbance in cerebral spinal fluid sphingolipid content is associated with memory impairment in subjects infected with the human immunodeficiency virus. J Neurovirol 16:445–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mochel F, Sedel F, Vanderver A et al (2009) Cerebellar ataxia with elevated cerebrospinal free sialic acid (CAFSA). Brain 132:801–809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montine TJ, Beal MF, Cudkowicz ME et al (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52:562–5

    CAS  PubMed  Google Scholar 

  • Mulder C, Wahlund LO, Teerlink T et al (2003) Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J Neural Transm 110:949–55

    CAS  PubMed  Google Scholar 

  • Murphy RC, Axelsen PH (2011) Mass spectrometric analysis of long-chain lipids. Mass Spectrom Rev 30:579–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy RC, Hankin JA, Barkley RM (2009) Imaging of lipid species by MALDI mass spectrometry. J Lipid Res 50:S317–S322

    PubMed Central  PubMed  Google Scholar 

  • Nagai Y, Kanfer JN (1971) Composition of human cerebrospinal fluid cerebroside. J Lipid Res 12:143–8

    CAS  PubMed  Google Scholar 

  • Nalesso A, Viel G, Cecchetto G et al (2011) Quantitative profiling of phosphatidylethanol molecular species in human blood by liquid chromatography high resolution mass spectrometry. J Chromatogr A 1218:8423–8431

    CAS  PubMed  Google Scholar 

  • Nie H, Liu R, Yang Y et al (2010) Lipid profiling of rat peritoneal surface layers by online normal- and reversed-phase 2D LC QToF-MS. J Lipid Res 51(9):2833–2844

  • Oresković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64:241–262

    PubMed  Google Scholar 

  • Peterson BL, Cumming BS (2006) A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 20:227–243

    CAS  PubMed  Google Scholar 

  • Pilitsis JG, Diaz FG, Wellwood JM et al (2001) Quantification of free fatty acids in human cerebrospinal fluid. Neurochem Res 26:1265–1270

    CAS  PubMed  Google Scholar 

  • Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    CAS  PubMed  Google Scholar 

  • Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86

    CAS  PubMed  Google Scholar 

  • Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    CAS  PubMed  Google Scholar 

  • Sandhoff K, Harzer K (2013) Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 33:10195–10208

    CAS  PubMed  Google Scholar 

  • Schiller J, Suss R, Arnhold J et al (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43:449–488

    CAS  PubMed  Google Scholar 

  • Schiller J, Suss R, Fuchs B, Muller M, Zschornig O, Arnold K (2007) MALDI-TOF MS in lipidomics. Front Biosci 12:2568–2579

    CAS  PubMed  Google Scholar 

  • Schmelzer K, Fahy E, Subramaniam S, Dennis EA (2007) The lipid maps initiative in lipidomics. Methods Enzymol 432:171–83

    CAS  PubMed  Google Scholar 

  • Schuhmann K, Almeida R, Baumert M, Herzog R, Bornstein SR, Shevchenko A (2012) Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J Mass Spectrom 47:96–104

    CAS  PubMed  Google Scholar 

  • Schwudke D, Schuhmann K, Herzog R, Bornstein SR, Shevchenko A (2011) Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb Perspect Biol 3:a004614

    PubMed Central  PubMed  Google Scholar 

  • Shaner RL, Allegood JC, Park H et al (2009) Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 50:1692–1707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11:593–598

    CAS  PubMed  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdac G (2006) XCMS: processing mass spectrometry data for metabolite profiling using non-linear peak alignment, matching, and identification. Anal Chem 78:779–787

    CAS  PubMed  Google Scholar 

  • Stahlman M, Ejsing CS, Tarasov K, Perman J, Borén J, Ekroos K (2009) High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 877:2664–2672

    CAS  Google Scholar 

  • Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7:493–496

    CAS  PubMed  Google Scholar 

  • Taguchi R, Ishikawa M (2010) Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J Chromatogr A 1217:4229–4239

    CAS  PubMed  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    CAS  Google Scholar 

  • Thomas D, Eberle M, Schiffmann S, Zhang DD, Geisslinger G, Ferreirós N (2013) Nano-LC-MS/MS for the quantitation of ceramides in mice cerebrospinal fluid using minimal sample volume. Talanta 116:912–918

    CAS  PubMed  Google Scholar 

  • Tichy J, Alling C, Dencker SJ, Svennerholm L (1970) Fatty acid profiles of cerebrospinal fluid lipids in normals and chronic alcoholics. Scand J Clin Lab Invest 25:191–197

    CAS  PubMed  Google Scholar 

  • Tourtellotte WW (1959) Study of lipids in cerebrospinal fluid. VI. The normal lipid profile. Neurology 9:375–383

    CAS  PubMed  Google Scholar 

  • Trbojevic-Cepe M, Kracun I (1990) Determination of gangliosides in human cerebrospinal fluid by high-performance thin-layer chromatography and direct densitometry. J Clin Chem Clin Biochem 28:863–72

    CAS  PubMed  Google Scholar 

  • Trbojevic-Cepe M, Kracun I, Jusic A, Pavlicek I (1991) Gangliosides of human cerebrospinal fluid in various neurologic diseases. J Neurol Sci 105:192–199

    CAS  PubMed  Google Scholar 

  • Tserng KY, Griffin R (2003) Quantitation and molecular species determination of diacylglycerols, phosphatidylcholines, ceramides, and sphingomyelins with gas chromatography. Anal Biochem 323:84–93

    CAS  PubMed  Google Scholar 

  • Wang WQ, Gustafon A (1992) One-dimensional thin-layer chromatographic separation of phospholipids and lysophospholipids from tissue lipid extracts. J Chromatogr 581:139–142

    CAS  PubMed  Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    CAS  PubMed  Google Scholar 

  • Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    CAS  PubMed  Google Scholar 

  • Yamada T, Uchikata T, Sakamoto S et al (2013) Supercritical fluid chromatography/Orbitrap mass spectrometry based lipidomics platform coupled with automated lipid identification software for accurate lipid profiling. J Chromatogr A 1301:237–242

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by MetaboHUB (ANR-11-INBS-0010) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 2012-305121 “Integrated European –omics research project for diagnosis and therapy in rare neuromuscular and neurodegenerative diseases (NeurOmics)”

Compliance with ethics guidelines

Conflict of interest

None.

Animal rights

This review does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

This review does not contain any studies with human subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Colsch.

Additional information

Communicated by: Ronald J. A. Wanders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colsch, B., Seyer, A., Boudah, S. et al. Lipidomic analysis of cerebrospinal fluid by mass spectrometry–based methods. J Inherit Metab Dis 38, 53–64 (2015). https://doi.org/10.1007/s10545-014-9798-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9798-0

Keywords

Navigation