, Volume 33, Issue 5, pp 571-581
Date: 03 Sep 2010

The genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy due to mutations in ALDH7A1

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Pyridoxine-dependent epilepsy is a disorder associated with severe seizures that may be caused by deficient activity of α-aminoadipic semialdehyde dehydrogenase, encoded by the ALDH7A1 gene, with accumulation of α-aminoadipic semialdehyde and piperideine-6-carboxylic acid. The latter reacts with pyridoxal-phosphate, explaining the effective treatment with pyridoxine. We report the clinical phenotype of three patients, their mutations and those of 12 additional patients identified in our clinical molecular laboratory. There were six missense, one nonsense, and five splice-site mutations, and two small deletions. Mutations c.1217_1218delAT, I431F, IVS-1(+2)T > G, IVS-2(+1)G > A, and IVS-12(+1)G > A are novel. Some disease alleles were recurring: E399Q (eight times), G477R (six times), R82X (two times), and c.1217_1218delAT (two times). A systematic review of mutations from the literature indicates that missense mutations cluster around exons 14, 15, and 16. Nine mutations represent 61% of alleles. Molecular modeling of missense mutations allows classification into three groups: those that affect NAD+ binding or catalysis, those that affect the substrate binding site, and those that affect multimerization. There are three clinical phenotypes: patients with complete seizure control with pyridoxine and normal developmental outcome (group 1) including our first patient; patients with complete seizure control with pyridoxine but with developmental delay (group 2), including our other two patients; and patients with persistent seizures despite pyridoxine treatment and with developmental delay (group 3). There is preliminary evidence for a genotype-phenotype correlation with patients from group 1 having mutations with residual activity. There is evidence from patients with similar genotypes for nongenetic factors contributing to the phenotypic spectrum.

Communicated by: K. Michael Gibson
Competing interests: None declared
Contributions of the authors: G. Scharer, G. Creadon-Swindell, and E. Spector performed the mutation analyses; G. Scharer, R. Gallagher, and J. Van Hove were responsible for the patient information; C. Brocker and V. Vasiliou were responsible for the mutation modeling data; J. Van Hove and G. Scharer reviewed the literature and wrote the paper. All authors have contributed to the article and have seen and approved the final version of the manuscript.