Skip to main content
Log in

Ethosomes and organogels for cutaneous administration of crocin

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The present study describes the production and characterization of phosphatidylcholine based ethosomes and organogels, as percutaneous delivery systems for crocin. Crocin presence did not influence ethosome morphology, while the drug slightly increased ethosome mean diameter. Importantly, the poor chemical stability of crocin has been found to be long controlled by organogel. To investigate the performance of phosphatidylcholine lipid formulations as crocin delivery system, in vivo studies, based on tape stripping and skin reflectance spectrophotometry, were performed. Tape stripping results suggested a rapid initial penetration of crocin exerted by the organogel, probably due to a strong interaction between the peculiar supramolecular aggregation structure of phospholipids in the vehicle and the lipids present in the stratum corneum and a higher maintenance of crocin concentration in the case of ethosomes, possibly because of the formation of a crocin depot in the stratum corneum. Skin reflectance spectrophotometry data indicated that both vehicles promoted the penetration of crocin through the skin, with a more rapid anti-inflammatory effect exploited by ethosomes, attributed to an ethanol pronounced penetration enhancer effect and to the carrier system as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ETHO:

Ethosomes

ORG:

Organogels

CRO:

Crocin

X GUM:

Xanthan gum

PC:

Phosphatidylcholine

MED:

Minimal erythemal dose

References

  • S.H. Alavizadeh, H. Hosseinzadeh, Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem. Toxicol. 64, 65–80 (2014)

    Article  Google Scholar 

  • A. Asai, T. Nakano, M. Takahashi, A. Nagao, Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J. Agric. Food. Chem. 53, 7302–6 (2005)

    Article  Google Scholar 

  • S.S. Bodade, K.S. Shaikh, M.S. Kamble, P.D. Chaudhari, A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Delivery 20, 40–6 (2013)

    Article  Google Scholar 

  • M. Changez, J. Chander, A.K. Dinda, Transdermal permeation of tetracaine hydrochloride by lecithin microemulsion: in vivo. Colloids Surf. B: Biointerfaces 48, 58–66 (2006)

    Article  Google Scholar 

  • E. Christodoulou, N.P. Kadoglou, N. Kostomitsopoulos, G. Valsami, Saffron: a natural product with potential pharmaceutical applications. J. Pharm. Pharmacol. 67, 1634–49 (2015)

    Article  Google Scholar 

  • K.S. Chun, J. Kundu, J.K. Kundu, Y.J. Surh, Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals. Toxicol. Lett. 229, 73–84 (2014)

    Article  Google Scholar 

  • G.M. El Maghraby, A.C. Williams, Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin. Drug Deliv. 6, 149–63 (2009)

    Article  Google Scholar 

  • J. Escribano, G.L. Alonso, M. Coca-Prados, J.A. Fernandez, Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 100, 23–30 (1996)

    Article  Google Scholar 

  • E. Esposito, R. Cortesi, M. Drechsler, L. Paccamiccio, P. Mariani, C. Contado, E. Stellin, E. Menegatti, F. Bonina, C. Puglia, Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res. 22, 2163–73 (2005)

    Article  Google Scholar 

  • E. Esposito, P. Mariani, L. Ravani, C. Contado, M. Volta, S. Bido, M. Drechsler, S. Mazzoni, E. Menegatti, M. Morari, R. Cortesi, Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur. J. Pharm. Biopharm. 80, 306–14 (2012)

    Article  Google Scholar 

  • E. Esposito, E. Menegatti, R. Cortesi, Design and characterization of fenretinide containing organogels. Mater. Sci. Eng. C 33, 383–9 (2013)

    Article  Google Scholar 

  • E. Esposito, L. Ravani, P. Mariani, N. Huang, P. Boldrini, M. Drechsler, G. Valacchi, R. Cortesi, C. Puglia, Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur. J. Pharm. Biopharm. 86, 121–32 (2014)

    Article  Google Scholar 

  • Z. Fiume, Final report on the safety assessment of lecithin and hydrogenated lecithin. Int. J. Toxicol. 20, 21–45 (2001)

    Google Scholar 

  • B. Godin, E. Touitou, Ethosomes: new prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 20, 63–102 (2003)

    Article  Google Scholar 

  • J. Grdadolnik, J. Kidric, D. Hadzi, Hydration of phosphatidylcholine reverse micelles and multilayers-an infrared spectroscopic study. Chem. Phys. Lipids 59, 57–68 (1991)

    Article  Google Scholar 

  • G.I. Harrison, A.R. Young, S.B. McMahon, Ultraviolet radiation-induced inflammation as a model for cutaneous hyperalgesia. J. Invest. Dermatol. 122, 183–9 (2004)

    Article  Google Scholar 

  • K. Hashizaki, N. Tamaki, H. Taguki, Y. Saito, K. Tsuchiya, H. Sakai, M. Abe, Rheological behavior of worm-like micelles in a mixed nonionic surfactant system of a polyoxyethylene phytosterol and a glycerin fatty acid monoester. Chem. Pharm. Bull. 56, 1682–6 (2008)

    Article  Google Scholar 

  • S. Jain, A.K. Tiwary, B. Sapra, N.K. Jain, Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech 8, 249 E1–E9 (2007)

    Article  Google Scholar 

  • T. Konoshima, M. Takasaki, H. Tokuda, S. Morimoto, H. Tanaka, E. Kawata, L.J. Xuan, H. Saito, M. Sugiura, J. Molnar, Y. Shoyama, Crocin and crocetin derivatives inhibit skin tumor promotion in mice. Phytother. Res. 12, 400–4 (1998)

    Article  Google Scholar 

  • R. Kumar, O.P. Katare, Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech 6, E298–310 (2005)

    Article  Google Scholar 

  • P.L. Luisi, R. Scartazzini, G. Haering, P. Schurtenberger, Organogels from water-in-oil microemulsions. Colloid Polym. Sci. 268, 356–74 (1990)

    Article  Google Scholar 

  • M. Marcotte, R. Taherian Hoshahili, H.S. Ramaswamy, Rheological properties of selected hydrocol as a function of concentration and temperature. Food Res. Int. 34, 695–703 (2001)

    Article  Google Scholar 

  • S.M. Meeran, M. Vaid, T. Punathil, S.K. Katiyar, Dietary grape seed proanthocyanidins inhibit 12-Otetradecanoyl phorbol-13-acetate-caused skin tumor promotion in 7,12-dimethylbenz[a]anthracene-initiated mouse skin, which is associated with the inhibition of inflammatory responses. Carcinogenesis 30, 520–8 (2009)

    Article  Google Scholar 

  • A.D. Mishra, C.N. Patel, D.R. Shah, Formulation and optimization of ethosomes for transdermal delivery of ropinirole hydrochloride. Curr. Drug Deliv. 10, 500–16 (2013)

    Article  Google Scholar 

  • A. Mittal, C.A. Elmets, S.K. Katiyar, Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24, 1379–88 (2003)

    Article  Google Scholar 

  • K.N. Nam, Y.M. Park, H.J. Jung, J.Y. Lee, B. Min, S. Park, W. Jung, K. Cho, J. Park, I. Kang, J. Hong, E.H. Lee, Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol. 648, 110–6 (2010)

    Article  Google Scholar 

  • V. Nandakumar, T. Singh, S.K. Katiyar, Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett. 269, 378–87 (2008)

    Article  Google Scholar 

  • K.D. Patil, S.R. Bakliwal, S.P. Pawar, Organogel: topical and transdermal drug delivery system. Int. J. Pharm. Res. Dev. 3, 58–66 (2011)

    Google Scholar 

  • R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2, 123–31 (2000)

    Article  Google Scholar 

  • W.J. Pugh, Kinetics of product stability, in Aultons’s Pharmaceutics. The design and manufacture of the medicines, ed. by M.E. Aulton, 3rd edn. (Churchil Livingstone Elsevier, London, 2007), pp. 99–107

    Google Scholar 

  • S. Raut, S.S. Bhadoriya, V. Uplanchiwar, V. Mishra, A. Gahane, S.K. Jain, Lecithin organogel: a unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm. Sin. B 2, 8–15 (2012)

    Article  Google Scholar 

  • F.M. Robertson, Skin carcinogenesis, in Encyclopedia of cancer, ed. by M. Schwab (Springer Berlin, Heidelberg, 2012), pp. 3432–5

    Google Scholar 

  • D. Satapathy, D. Biswas, B. Behera, S.S. Sagiri, K. Pal, K. Pramanik, Sunflower-oil-based lecithin organogels as matrices for controlled drug delivery. J. Appl. Polym. Sci. 129, 585–94 (2013)

    Article  Google Scholar 

  • Y.A. Schipunov, A micellar system with unique properties. Colloids Surf. A 185, 541–54 (2001)

    Article  Google Scholar 

  • Y.A. Schipunov, H. Hoffmann, Thinning and thickening effects induced by shearing in lecithin solutions of polymer-like micelles. Rheol. Acta 39, 542–53 (2000)

    Article  Google Scholar 

  • K.-W. Song, Y.-S. Kim, G.S. Chang, Rheology of concentrated xanthan gum solutions: Steady shear flow behaviour. Fibers Polym. 7, 129–38 (2006)

    Article  Google Scholar 

  • Y.J. Surh, Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 10, 768–80 (2003)

    Article  Google Scholar 

  • W. Tian, Q. Hu, Y. Xu, Effect of soybean-lecithin as an enhancer of buccal mucosa absorption of insulin. Biomed. Mater. Eng. 22, 171–8 (2012)

    Google Scholar 

  • E. Touitou, B. Godin, Dermal drug delivery with ethosomes: therapeutic potential. Therapy 4, 465–72 (2007)

    Article  Google Scholar 

  • E. Touitou, N. Dayan, L. Bergelson, B. Godin, M. Eliaz, Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release 65, 403–18 (2000)

    Article  Google Scholar 

  • M. Tsimidou, E. Tsatsaroni, Stability of saffron pigments in aqueous extracts. J. Food Sci. 58, 1073–5 (1993)

    Article  Google Scholar 

  • P. Verma, K. Pathak, Therapeutic and cosmeceutical potential of ethosomes: an overview. J. Adv. Pharm. Technol. Res. 1, 274–82 (2010)

    Article  Google Scholar 

  • A. Vintiloiu, J.-C. Leroux, Organogels and their use in drug delivery: a review. J. Control. Release 125, 179–92 (2008)

    Article  Google Scholar 

  • H. Wanga, T.O. Khorb, L. Shu, Z. Su, F. Fuentes, J.-H. Lee, A.-N.T. Kong, Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med. Chem. 12, 1281–305 (2012)

    Article  Google Scholar 

  • C.-J. Weng, G.-C. Yen, Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol and their derivatives. Cancer Treat. Rev. 38, 76–87 (2012)

    Article  Google Scholar 

  • P. Winterhalter, R.M. Straubinger, Saffron, renewed interest in an ancient spice. Food Rev. Intl. 16, 39–59 (2000)

    Article  Google Scholar 

  • J. Wohlrab, T. Klapperstück, H.W. Reinhardt, M. Albrecht, Interaction of epicutaneously applied lipids with stratum corneum depends on the presence of either emulsifiers or hydrogenated phosphatidylcholine. Skin Pharmacol. Physiol. 23, 298–305 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sarah Villebrun from Institut Galien Paris-Sud, Châtenay-Malabry, France for rheological characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabetta Esposito or Rita Cortesi.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

A: Aspect of ethosome (ETHO); ethosome prepared in the presence of crocin (ETHO-CRO); ethosome prepared in the presence of crocin and added with x-gum 1 %, w/w ETHO-CRO-x-gum B: Aspect of organogels obtained with 1:1 and 2:1 molar water to PC ratios (1:1 [water]/[PC]; 2:1 [water]/[PC]) and ORG-CRO: organogel prepared with 3:1 molar water to PC ratio in the presence of crocin (ORG-CRO) (GIF 259 kb)

High resolution image (TIF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, E., Drechsler, M., Huang, N. et al. Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdevices 18, 108 (2016). https://doi.org/10.1007/s10544-016-0134-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0134-3

Keywords

Navigation