Skip to main content
Log in

Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cell distribution and nutrient supply in 3D cell-laden hydrogel scaffolds are critical and should mimic the in vivo cellular environment, but been difficult to control with conventional fabrication methods. Here, we present a microfluidic direct writer (MFDW) to construct 3D cell-laden hydrogel structures with openings permitting media exchange. The MFDW comprises a monolithic microfluidic head, which delivers coaxial streams of cell-laden sodium alginate and calcium chloride solutions to form hydrogel fibers. Fiber diameter is controlled by adjusting the ratio of the volumetric flow rates. The MFDW head is mounted on a motorized stage, which is automatically controlled and moves at a speed synchronized with the speed of fiber fabrication. Head geometry, flow rates, and viscosity of the writing solutions were optimized to prevent the occurrence of curling and bulging. For continuous use, a highly reliable process is needed, which was accomplished with the integration of a declogging conduit supplying a solvent to dissolve the clogging gel. The MFDW was used for layer-by-layer fabrication of simple 3D structures with encapsulated cells. Assembly of 3D structures with distinct fibers is demonstrated by alternatively delivering two different alginate gel solutions. The MFDW head can be built rapidly and easily, and will allow 3D constructs for tissue engineering to be fabricated with multiple hydrogels and cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M. Akbari, D. Sinton, M. Bahrami, Pressure drop in rectangular microchannels as compared with theory based on arbitrary cross section. J. Fluids Eng. 131, 041202 (2009)

    Article  Google Scholar 

  • N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, A. Khademhosseini, 25th Anniversary Article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials. 26, 85–124 (2014)

  • S. Arumuganathar, S. Irvine, J.R. McEwan, S.N. Jayasinghe, A novel direct aerodynamically assisted threading methodology for generating biologically viable microthreads encapsulating living primary cells. J. Appl. Polym. Sci. 107(2), 1215–1225 (2008)

    Article  Google Scholar 

  • S.M. Berry, S.P. Warren, D.A. Hilgart, A.T. Schworer, S. Pabba, A.S. Gobin, R.W. Cohn, R.S. Keynton, Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers. Biomaterials 32(7), 1872–1879 (2011)

    Article  Google Scholar 

  • E.J. Chung, M.J. Sugimoto, J. Koh, G. Ameer, Low pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Tissue Eng. 18(2), 113–121 (2011)

    Article  Google Scholar 

  • B.G. Chung, K.-H. Lee, A. Khademhosseini, S.-H. Lee, Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12(1), 45–59 (2012)

    Article  Google Scholar 

  • V. Ellä, T. Annala, S. Länsman, M. Nurminen, M. Kellomäki, Knitted polylactide 96/4 L/D structures and scaffolds for tissue engineering. Biomatter 1(1), 102–113 (2012)

    Article  Google Scholar 

  • N.E. Fedorovich, W. Schuurman, H.M. Wijnberg, H.-J. Prins, P.R. van Weeren, J. Malda, J. Alblas, W.J.A. Dhert, Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. C 18(1), 33–44 (2012)

    Article  Google Scholar 

  • R. Gaetani, P.A. Doevendans, C.H.G. Metz, J. Alblas, E. Messina, A. Giacomello, J.P.G. Sluijter, Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6), 1782–1790 (2012)

    Article  Google Scholar 

  • R. Gauvin, Y.C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33(15), 3824–3834 (2012)

    Article  Google Scholar 

  • S. Ghorbanian, M.A. Qasaimeh, D. Juncker, Rapid prototyping of branched microfluidics in PDMS using capillaries. Chips and Tips (2010), http://blogs.rsc.org/chipsandtips/2010/05/03/rapid-prototyping-of-branched-microfluidics-in-pdms-using-capillaries/. Accessed 13 Feb 2014

  • L.D. Harris, B.-S. Kim, D.J. Mooney, Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42(3), 396–402 (1998)

    Article  Google Scholar 

  • M.-H. Ho, P.-Y. Kuo, H.-J. Hsieh, T.-Y. Hsien, L.-T. Hou, J.-Y. Lai, D.-M. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1), 129–138 (2004)

    Article  Google Scholar 

  • S.J. Hollister, Porous scaffold design for tissue engineering. Nat. Mater. 4(7), 518–524 (2005)

    Article  Google Scholar 

  • C.M. Hwang, A. Khademhosseini, Y. Park, K. Sun, S.-H. Lee, Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 24(13), 6845–6851 (2008)

    Article  Google Scholar 

  • C. Hwang, Y. Park, J. Park, K. Lee, K. Sun, A. Khademhosseini, S. Lee, Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed. Microdevices 11(4), 739–746 (2009)

    Article  Google Scholar 

  • E. Kang, G.S. Jeong, Y.Y. Choi, K.H. Lee, A. Khademhosseini, S.-H. Lee, Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10, 877–883 (2011)

    Article  Google Scholar 

  • K. Katoh, T. Tanabe, K. Yamauchi, Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 25(18), 4255–4262 (2004)

    Article  Google Scholar 

  • G.H. Kim, S.H. Ahn, H.J. Lee, S.Y. Lee, Y. Cho, W. Chun, A new hybrid scaffold using rapid prototyping and electrohydrodynamic direct writing for bone tissue regeneration. J. Mater. Chem. 21, 19138–19143 (2011)

    Article  Google Scholar 

  • R. Landers, A. Pfister, U. Hübner, H. John, R. Schmelzeisen, R. Mülhaupt, Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37(15), 3107–3116 (2002)

    Article  Google Scholar 

  • B.R. Lee, K.H. Lee, E. Kang, D.-S. Kim, S.-H. Lee, Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics 5(2), 022208 (2011a)

    Article  Google Scholar 

  • G.-S. Lee, J.-H. Park, U.S. Shin, H.-W. Kim, Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater. 7(8), 3178–3186 (2011b)

    Article  Google Scholar 

  • L. Leng, A. McAllister, B. Zhang, M. Radisic, A. Günther, Mosaic hydrogels: one-step formation of multiscale soft materials. Adv. Mater. 24(27), 3650–3658 (2012)

    Article  Google Scholar 

  • M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)

    Article  Google Scholar 

  • S. Mazzitelli, L. Capretto, D. Carugo, X. Zhang, R. Piva, C. Nastruzzi, Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications. Lab Chip 11, 1776–1785 (2011)

    Article  Google Scholar 

  • G. Mazzoleni, D. Di Lorenzo, N. Steimberg, Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr. 4(1), 13–22 (2009)

  • L. Moroni, J.R. de Wijn, C.A. van Blitterswijk, Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polym. Ed. 19(5), 543–572 (2008)

    Article  Google Scholar 

  • F.T. Moutos, L.E. Freed, F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6(2), 162–167 (2007)

    Article  Google Scholar 

  • Y.S. Nam, T.G. Park, Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20(19), 1783–1790 (1999)

    Article  Google Scholar 

  • S.C. Neves, L.S. Moreira Teixeira, L. Moroni, R.L. Reis, C.A. Van Blitterswijk, N.M. Alves, M. Karperien, J.F. Mano, Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32(4), 1068–1079 (2011)

    Article  Google Scholar 

  • C. Norotte, F.S. Marga, L.E. Niklason, G. Forgacs, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30), 5910–5917 (2009)

    Article  Google Scholar 

  • H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Miura, S. Iwanaga, K. Kuribayashi-Shigetomi, Y. Shimoyama, Y.T. Matsunaga, S. Takeuchi, Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013)

    Article  Google Scholar 

  • R. Opik, A. Hunt, A. Ristolainen, P.M. Aubin, M. Kruusmaa, Development of high fidelity liver and kidney phantom organs for use with robotic surgical systems Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on (2012), pp. 425–430

  • F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007)

    Article  Google Scholar 

  • J.S. Park, D.G. Woo, B.K. Sun, H.-M. Chung, S.J. Im, Y.M. Choi, K. Park, K.M. Huh, K.-H. Park, In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J. Control. Release 124(1–2), 51–59 (2007)

    Article  Google Scholar 

  • C.M. Perrault, M.A. Qasaimeh, T. Brastaviceanu, K. Anderson, Y. Kabakibo, D. Juncker, Rev. Sci. Instrum. 81(11), 115107–115108 (2010)

    Article  Google Scholar 

  • J.A. Rowley, D.J. Mooney, Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res. 60(2), 217–223 (2002)

    Article  Google Scholar 

  • P. Schiavone, F. Chassat, T. Boudou, E. Promayon, F. Valdivia, Y. Payan, In vivo measurement of human brain elasticity using a light aspiration device. Med. Image Anal. 13(4), 673–678 (2009)

    Article  Google Scholar 

  • Z. Shi, N. Chen, Y. Du, A. Khademhosseini, M. Alber, Stochastic model of self-assembly of cell-laden hydrogels. Phys. Rev. E 80(6), 061901 (2009)

    Article  Google Scholar 

  • S.-J. Shin, J.-Y. Park, J.-Y. Lee, H. Park, Y.-D. Park, K.-B. Lee, C.-M. Whang, S.-H. Lee, “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23(17), 9104–9108 (2007)

    Article  Google Scholar 

  • A. Steinbuchel, Alginates: Biology and Applications (Springer, Germany, 2009)

    Google Scholar 

  • J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials 6(4), 1285–1309 (2013)

    Article  MathSciNet  Google Scholar 

  • A. Tamayol, M. Akbari, N. Annabi, A. Paul, A. Khademhosseini, D. Juncker, Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances 31(5), 669–687 (2013)

    Google Scholar 

  • K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, W.S. Gui, W.S. Tan, F.E. Wiria, Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed. Mater. Eng. 15(1), 113–124 (2005)

    Google Scholar 

  • L. Vogelaar, J.N. Barsema, C.J.M. van Rijn, W. Nijdam, M. Wessling, Phase separation micromolding—PSμM. Adv. Mater. 15(16), 1385–1389 (2003)

    Article  Google Scholar 

  • X. Wang, W. Li, V. Kumar, A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 27(9), 1924–1929 (2006)

    Article  Google Scholar 

  • F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 3(1), 1–12 (2007)

    Article  Google Scholar 

  • K.M. Yamada, E. Cukierman, Modeling tissue morphogenesis and cancer in 3D. Cell 130(4), 601–610 (2007)

    Article  Google Scholar 

  • M. Yamada, S. Sugaya, Y. Naganuma, M. Seki, Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter 8, 3122–3130 (2012)

    Article  Google Scholar 

  • Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato, H. Kobayashi, Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater. Lett. 63(9–10), 754–756 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge funding from Natural Sciences and Engineering Research Council of Canada (NSERC), The Canadian Institutes of Health Research (CIHR), Certified Human Resources Professional (CHRP), Genome Canada, Genome Quebec, and Canada Foundation for Innovation (CFI.) M.A.Q. acknowledges Alexander Graham Bell Canada Graduate Scholarship (CGSD), M.A and A. T. acknowledge NSERC Postdoctoral fellowships, and D.J. acknowledges support from a Canada Research Chair. The authors thank Adiel Malik, Veronique Laforte, Sebastien Bergeron, and Kate Turner for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Juncker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 341 kb)

(WMV 19161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorbanian, S., Qasaimeh, M.A., Akbari, M. et al. Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs. Biomed Microdevices 16, 387–395 (2014). https://doi.org/10.1007/s10544-014-9842-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9842-8

Keywords

Navigation