Biomedical Microdevices

, Volume 15, Issue 2, pp 311–319

Micromechanical properties of hydrogels measured with MEMS resonant sensors

  • Elise A. Corbin
  • Larry J. Millet
  • James H. Pikul
  • Curtis L. Johnson
  • John G. Georgiadis
  • William P. King
  • Rashid Bashir
Article

DOI: 10.1007/s10544-012-9730-z

Cite this article as:
Corbin, E.A., Millet, L.J., Pikul, J.H. et al. Biomed Microdevices (2013) 15: 311. doi:10.1007/s10544-012-9730-z

Abstract

Hydrogels have gained wide usage in a range of biomedical applications because of their biocompatibility and the ability to finely tune their properties, including viscoelasticity. The use of hydrogels on the microscale is increasingly important for the development of drug delivery techniques and cellular microenvironments, though the ability to accurately characterize their micromechanical properties is limited. Here we demonstrate the use of microelectromechanical systems (MEMS) resonant sensors to estimate the properties of poly(ethylene glycol) diacrylate (PEGDA) microstructures over a range of concentrations. These microstructures are integrated on the sensors by deposition using electrohydrodynamic jet printing. Estimated properties agree well with independent measurements made using indentation with atomic force microscopy.

Keywords

MEMS mass sensorElectrohydrodynamic jet printingPolyethylene glycolMass-spring-damper systemHydrogel micromechanics

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Elise A. Corbin
    • 1
    • 2
  • Larry J. Millet
    • 2
  • James H. Pikul
    • 1
  • Curtis L. Johnson
    • 1
  • John G. Georgiadis
    • 1
  • William P. King
    • 1
    • 2
  • Rashid Bashir
    • 2
    • 3
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana-ChampaignUrbanaUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA