Biomedical Microdevices

, Volume 14, Issue 4, pp 625–629

Improvement in cell capture throughput using parallel bioactivated microfluidic channels

  • Mehdi Javanmard
  • Farbod Babrzadeh
  • Pål Nyrén
  • Ronald W. Davis
Article

DOI: 10.1007/s10544-012-9643-x

Cite this article as:
Javanmard, M., Babrzadeh, F., Nyrén, P. et al. Biomed Microdevices (2012) 14: 625. doi:10.1007/s10544-012-9643-x

Abstract

Optimization of targeted cell capture with microfluidic devices continues to be a challenge. On the one hand, microfluidics allow working with microliter volumes of liquids, whereas various applications in the real world require detection of target analyte in large volumes, such as capture of rare cell types in several ml of blood. This contrast of volumes (microliter vs. ml) has prevented the emergence of microfluidic cell capture sensors in the clinical setting. Here, we study the improvement in cell capture and throughput achieved using parallel bioactivated microfluidic channels. The device consists of channels in parallel with each other tied to a single channel. We discuss fabrication and testing of our devices, and show the ability for an improvement in throughput detection of target cells.

Keywords

MicrofluidicsCell capturePathogen detection

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mehdi Javanmard
    • 1
  • Farbod Babrzadeh
    • 1
    • 2
  • Pål Nyrén
    • 2
  • Ronald W. Davis
    • 1
  1. 1.Stanford Genome Technology CenterStanford University StanfordStanfordUSA
  2. 2.Department of BiotechnologyAlbaNova UniversityCenter, KTHStockholmSweden