Biomedical Microdevices

, Volume 13, Issue 3, pp 517–526

Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system

  • De-Yao Wang
  • Shinn-Chih Wu
  • Shau-Ping Lin
  • Shih-Hsiang Hsiao
  • Tze-Wen Chung
  • Yi-You Huang
Article

DOI: 10.1007/s10544-011-9520-z

Cite this article as:
Wang, D., Wu, S., Lin, S. et al. Biomed Microdevices (2011) 13: 517. doi:10.1007/s10544-011-9520-z

Abstract

We design a microfluidic patterned co-culture system for mouse mesenchymal stem cells (mMSCs) and neural cells to demonstrate the paracrine effects produced by the neural cells in facilitating the transdifferentiation from mMSCs to neuron-like cells. Neural cells and mMSC are orderly patterned in the microfluidic co-culturing system without direct cell contact. This configuration provides us to calculate the percentage of neural marker transdifferentiated by mMSCs easily. We obtain higher transdifferentiated ratio of mMSC in the microfluidic co-culturing system (beta III tubulin: 67%; glial fibrillary acidic protein (GFAP): 86.2%) as compared with the traditional transwell co-culturing system (beta III tubulin: 59.8%; GFAP: 52.0%), which is similar to the spontaneous neural marker expression in the undifferentiated MSCs (beta III tubulin: 47.5%; GFAP: 60.1%). Furthermore, mMSCs expressing green fluorescent protein and neural cells expressing red fluorescent protein were also used in our co-culture system to demonstrate the rarely occurring or observed cell fusion phenomenon. The results show that the co-cultured neural cells increased the transdifferentiation efficiency of mMSCs from soluble factors secreted by neural cells.

Keywords

Mesenchymal stem cellNeural cellCo-cultureMicropatterningLaser manufacturingPolydimethylsiloxane

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • De-Yao Wang
    • 1
  • Shinn-Chih Wu
    • 2
  • Shau-Ping Lin
    • 3
  • Shih-Hsiang Hsiao
    • 2
  • Tze-Wen Chung
    • 4
  • Yi-You Huang
    • 1
  1. 1.Institute of Biomedical Engineering, College of Engineering, College of MedicineNational Taiwan UniversityTaipeiRepublic of China
  2. 2.Department of Animal Science and Technology, College of Bio-Resources and AgricultureNational Taiwan UniversityTaipeiRepublic of China
  3. 3.Institute of Biotechnology, College of Bio-Resources and AgricultureNational Taiwan UniversityTaipeiRepublic of China
  4. 4.Department of Chemical and Material EngineeringNational Yunlin University of Science and TechnologyDou-Liu, Yun-LinRepublic of China