, Volume 10, Issue 2, pp 259-269
Date: 04 Oct 2007

A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A new, scalable process for microfabrication of a silicone-based, elastic multi-electrode array (MEA) is presented. The device is constructed by spinning poly(dimethylsiloxane) (PDMS) silicone elastomer onto a glass slide, depositing and patterning gold to construct wires and electrodes, spinning on a second PDMS layer, and then micropatterning the second PDMS layer to expose electrode contacts. The micropatterning of PDMS involves a custom reactive ion etch (RIE) process that preserves the underlying gold thin film. Once completed, the device can be removed from the glass slide for conformal interfacing with neural tissue. Prototype MEAs feature electrodes smaller than those known to be reported on silicone substrate (60 μm diameter exposed electrode area) and were capable of selectively stimulating the surface of the in vitro isolated spinal cord of the juvenile rat. Stretchable serpentine traces were also incorporated into the functional PDMS-based MEA, and their implementation and testing is described.

KWM and RJG contributed equally to the work reported in this manuscript.