Skip to main content
Log in

Multilevel Monte Carlo front-tracking for random scalar conservation laws

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 23 August 2017

A Correction to this article was published on 23 August 2017

This article has been updated

Abstract

We consider random scalar hyperbolic conservation laws in spatial dimension \(d\ge 1\) with bounded random flux functions which are Lipschitz continuous with respect to the state variable, for which there exists a unique random entropy solution. We present a convergence analysis of a multilevel Monte Carlo front-tracking algorithm. It is based on “pathwise” application of the front-tracking method for deterministic conservation laws. Due to the first order convergence of front tracking, we obtain an improved complexity estimate in one space dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 23 August 2017

    A correction to this article has been published.

  • 23 August 2017

    An erratum to this article has been published.

References

  1. Bagrinovskiĭ, K.A., Godunov, S. K.: Difference schemes for multidimensional problems. Dokl. Akad. Nauk SSSR (N.S.) 115, 431–433 (1957)

  2. Bressan, A., LeFloch, P.: Uniqueness of weak solutions to systems of conservation laws. Arch. Ration. Mech. Anal. 140(4), 301–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bressan, A., Liu, T.-P., Yang, T.: \(L^1\) stability estimates for \(n\times n\) conservation laws. Arch. Ration. Mech. Anal. 149(1), 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dafermos, C.M.: Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 3rd edn. Springer, Berlin (2010)

  6. E, Weinan, Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. (2) 151(3), 877–960 (2000)

  7. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

  8. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

  9. Giles, M.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Monte Carlo and quasi-Monte Carlo methods 2006, pp. 343–358. Springer, Berlin (2008)

  10. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giusti, E.: Minimal surfaces and functions of bounded variation. In: Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984)

  12. Godlewski, E., Raviart, P.-A.: Hyperbolic systems of conservation laws. In: Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 3/4. Ellipses, Paris (1991)

  13. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. In: Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

  14. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heinrich, S.: Multilevel Monte Carlo methods. In: Large-Scale Scientific Computing, pp. 58–67. Springer, Berlin (2001)

  16. Holden, H., Holden, L.: On scalar conservation laws in one dimension. In: Ideas and Methods in Mathematical Analysis. Stochastics, and Applications (Oslo, 1988), pp. 480–509. Cambridge Univ. Press, Cambridge (1992)

  17. Holden, H., Holden, L., Høegh-Krohn, R.: A numerical method for first order nonlinear scalar conservation laws in one dimension. Comput. Math. Appl., 15(6–8), 595–602 (1988)

  18. Holden, H., Karlsen, K.H., Lie, K.-A., Risebro, N.H.: Splitting methods for partial differential equations with rough solutions. In: EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2010)

  19. Holden, H., Lindstrøm, T., Øksendal, B., Ubøe, J., Zhang, T.-S.: The Burgers equation with a noisy force and the stochastic heat equation. Commun. Partial Differ. Equ. 19(1–2), 119–141 (1994)

  20. Holden, H., Risebro, N.H.: Conservation laws with a random source. Appl. Math. Optim. 36(2), 229–241 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws. In: Applied Mathematical Sciences, vol. 152. Springer, New York (2011). (First softcover corrected printing of the 2002 original)

  22. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

  23. LeVeque, R.J.: Finite volume methods for hyperbolic problems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  24. Mishra, S.. Risebro, N.H., Schwab, C., Tokareva, S.: Numerical solution of scalar conservation laws with random flux functions. Technical Report 2012-35. Seminar for Applied Mathematics, ETH Zürich, Switzerland (2012)

  25. Mishra, S., Schwab, C.: Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput. 81(280), 1979–2018 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mishra, S., Schwab, C., Šukys, J.: Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. J. Comput. Phys. 231(8), 3365–3388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mishra, S., Schwab, C., Šukys, J.: Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 225–294. Springer, New York (2013)

  28. Perthame, B.: Kinetic formulation of conservation laws. In: Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, New York (2002)

  29. van Neerven, J.: Stochastic evolution equations. In: Lecture Notes, ISEM (2007/2008)

  30. Wehr, J., Xin, J.: White noise perturbation of the viscous shock fronts of the Burgers equation. Commun. Math. Phys. 181(1), 183–203 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wehr, J., Xin, J.: Front speed in the Burgers equation with a random flux. J. Stat. Phys. 88(3–4), 843–871 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is performed as part of ETH interdisciplinary research Grant CH1-03 10-1 and partially supported by NRF-project 214495 LIQCRY. The work of Schwab was supported in part by ERC FP7 Grant No. AdG 247277. The work of Risebro was performed while visiting SAM during a sabbatical in the academic year 2011/2012. The authors thank Jonas Šukys for providing a reference solution for a numerical experiment and Siddhartha Mishra and Jonas Šukys for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Henrik Risebro.

Additional information

Communicated by Desmond Higham.

A correction to this article is available online at https://doi.org/10.1007/s10543-017-0670-0.

An erratum to this article is available at https://doi.org/10.1007/s10543-017-0670-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risebro, N.H., Schwab, C. & Weber, F. Multilevel Monte Carlo front-tracking for random scalar conservation laws. Bit Numer Math 56, 263–292 (2016). https://doi.org/10.1007/s10543-015-0550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0550-4

Keywords

Mathematics Subject Classification

Navigation