Skip to main content
Log in

Adaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A three-dimensional H(curl)-elliptic optimal control problem with distributed control and pointwise constraints on the control is considered. We present a residual-type a posteriori error analysis with respect to a curl-conforming edge element approximation of the optimal control problem. Here, the lowest order edge elements of Nédélec’s first family are used for the discretization of the state and the control with respect to an adaptively generated family of simplicial triangulations of the computational domain. In particular, the a posteriori error estimator consists of element and face residuals associated with the state equation and the adjoint state equation. The main results are the reliability of the estimator and its efficiency up to oscillations in terms of the data of the problem. In the last part of the paper, numerical results are included which illustrate the performance of the adaptive approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  2. Arnold, D., Falk, R., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85, 197–217 (2000)

  3. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15(2006), 1–155 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babuska, I., Strouboulis, T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001)

    Google Scholar 

  5. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH-Zürich. Birkhäuser, Basel (2003)

  6. Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surv. Math. Ind. 8, 271–312 (1999)

  7. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34, 159–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buffa, A., Ciarlet Jr, P.: On traces for functional spaces related to Maxwell’s equations. part i. Math. Meths. Appl. Sci. 24, 9–30 (2001)

  10. Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13, 19–32 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen, C., Hoppe, R.H.W.: Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems. J. Numer. Math. 17, 27–44 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cascon, J.M., Kreuzer, Ch., Nochetto, R.H., Siebert, K.G.: Quasi-optimal rate of convergence of adaptive finite element methods. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

  15. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  16. Gaevskaya, A., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: Convergence analysis of an adaptive finite element method for distributed control problems with control constraints. In: Leugering, G., et al., (eds.) Proc. Conf. Optimal Control for PDEs, Oberwolfach, Germany, Birkhäuser, Basel (2007)

  17. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, 1721–1743 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hintermüller, M., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM Control Optim. Calc. Var. 14, 540–560 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225 (1999)

  20. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin-Heidelberg-New York (1993)

    Google Scholar 

  22. Hoppe, R.H.W., Schöberl, J.: Convergence of adaptive edge element methods for the 3d eddy currents equations. J. Comp. Math. 27, 657–676 (2009)

    Article  MATH  Google Scholar 

  23. Houston, P., Perugia, I., Schötzau, D.: A posteriori error estimation for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal. 27, 122–150 (2007)

  24. Kolmbauer, M., Langer, U.: A robust preconditioned minres solver for distributed time-periodic eddy current optimal control problems. SIAM J. Sci. Comput. 34, B785–B809 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Series in Information and Computational Science, vol. 41. Global Science Press, Hong Kong (2008)

  27. Logg, A., Mardal, K.-A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Boston (2012)

    Book  MATH  Google Scholar 

  28. Monk, P.: A posteriori error indicators for Maxwell’s equations. J. Comp. Appl. Math. 100, 173–190 (1998)

  29. Monk, P.: Finite Element Methods for Maxwell Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  30. Nédélec, J.-C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35, 315–341 (1980)

  31. Neittaanmäki, P., Repin, S.: Reliable Methods for Mathematical Modelling. Error Control and a Posteriori Estimates. Elsevier, New York (2004)

    Google Scholar 

  32. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comp. 77, 633–649 (2008)

  33. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tartar, L.: Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin (2007)

    Google Scholar 

  35. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods, and Applications. American Mathematical Society, Providence (2010)

  36. Tröltzsch, F., Yousept, I.: PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages. ESAIM M2AN 46, 709–729 (2012)

    Article  MATH  Google Scholar 

  37. Verfürth, R.: A Review of a Posteriori Estimation and Adaptive Mesh—Refinement Techniques. Wiley-Teubner, New York (1996)

    MATH  Google Scholar 

  38. Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47, 1150–1177 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates of the Nedelec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27(2009), 563–572 (2009)

  40. Yousept, I.: Optimal control of quasilinear H (curl)-elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51, 3624–3651 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yousept, I.: Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. 52, 59–581 (2012)

  42. Yousept, I.: Finite element analysis of an optimal control problem in the coefficients of time-harmonic eddy current equations. J. Optim. Theory Appl. 154, 879–903 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comp. 81, 623–642 (2012)

Download references

Acknowledgments

The first author acknowledges support by the NSF Grants DMS-1115658, DMS-1216857, by the German National Science Foundation within the Priority Programs SPP 1253, SPP 1506, by the German Federal Ministry for Education and Research (BMBF) within the projects BMBF-FROPT and BMBF-MeFreSim, and by the European Science Foundation (ESF) within the ESF Program OPTPDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald H. W. Hoppe.

Additional information

Communicated by Ulrich Langer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoppe, R.H.W., Yousept, I. Adaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints. Bit Numer Math 55, 255–277 (2015). https://doi.org/10.1007/s10543-014-0497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0497-x

Keywords

Mathematics Subject Classification (2010)

Navigation