Skip to main content
Log in

Fully discrete semi-Lagrangian methods for advection of differential forms

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study the discretization of linear transient transport problems for differential forms on bounded domains. The focus is on unconditionally stable semi-Lagrangian methods that employ finite element approximation on fixed meshes combined with tracking of the flow map. We derive these methods as finite element Galerkin approach to discrete material derivatives and discuss further approximations leading to fully discrete schemes.

We establish comprehensive a priori error estimates, in particular a new asymptotic estimate of order \(O(h^{r+1}\tau^{-\frac{1}{2}})\) for the L 2-error of semi-Lagrangian schemes with exact L 2-projection. Here, h is the spatial meshwidth, τ denotes the timestep, and r is the (full) polynomial degree of the piecewise polynomial discrete differential forms used as trial functions. Yet, numerical experiments hint that the estimates may still be sub-optimal for spatial discretization with lowest order discrete differential forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Occasionally we will use the operator \(\operatorname{v.p.}\) to indicate that a form is mapped to its corresponding Euclidean vector proxy.

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (New Ser.) 47(2), 281–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, M.D., Süli, E., Ware, A.F.: Stability and convergence of the spectral Lagrange-Galerkin method for mixed periodic/non-periodic convection-dominated diffusion problems. IMA J. Numer. Anal. 19(4), 637–663 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99(2–3), 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bercovier, M., Pironneau, O., Sastri, V.: Finite elements and characteristics for some parabolic-hyperbolic problems. Appl. Math. Model. 7(2), 89–96 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bossavit, A.: In: Applied Differential Geometry (2005). http://butler.cc.tut.fi/~bossavit/BackupICM/Compendium.html

    Google Scholar 

  7. Bossavit, A.: Discretization of electromagnetic problems: the “generalized finite differences”. In: Schilders, W.H.A., ter Maten, W.J.W. (eds.) Numerical Methods in Electromagnetics. Handbook of Numerical Analysis, vol. XIII, pp. 443–522. Elsevier, Amsterdam (2005)

    Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  9. Dawson, J.M.: Particle simulation of plasmas. Rev. Mod. Phys. 55(2), 403–447 (1983)

    Article  Google Scholar 

  10. Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128(1–2), 423–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47(1–2), 73–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frankel, T.: The Geometry of Physics: An Introduction. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  15. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  16. Hasbani, Y., Livne, E., Bercovier, M.: Finite elements and characteristics applied to advection-diffusion equations. Comput. Fluids 11(2), 71–83 (1983)

    Article  MATH  Google Scholar 

  17. Heumann, H., Hiptmair, R.: Convergence of lowest order semi-Lagrangian schemes. Report 2011-47, SAM, ETH Zürich (2011). Submitted to Found. Comp. Math.

  18. Heumann, H., Hiptmair, R.: Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete Contin. Dyn. Syst. 29(4), 1471–1495 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heumann, H., Hiptmair, R.: Refined convergence theory for semi-Lagrangian schemes for pure advection. Technical report 2011-60, Seminar for Applied Mathematics, ETH Zürich (2011). http://www.sam.math.ethz.ch/reports/2011/60

  20. Heumann, H., Hiptmair, R., Xu, J.: A semi-Lagrangian method for convection of differential forms. Technical report 2009-09, Seminar for Applied Mathematics, ETH Zürich (2009). http://www.sam.math.ethz.ch/reports/2009/09

  21. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows. AMD, vol. 34, pp. 19–35. Am. Soc. Mech. Engrs., New York (1979)

    Google Scholar 

  24. Jack, R.O.: Convergence properties of Lagrangian-Galerkin method with and without exact integration. Technical report OUCL report 87/10, Oxford (1987)

  25. Johnson, C.: A new approach to algorithms for convection problems which are based on exact transport + projection. Comput. Methods Appl. Mech. Eng. 100(1), 45–62 (1992)

    Article  MATH  Google Scholar 

  26. Lasaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: In Proc. Sympos., Math. Res. Center, Univ. of Wisconsin-Madison, vol. 33, pp. 89–123. Academic Press, New York (1974)

    Google Scholar 

  27. Morton, K.W., Priestley, A., Süli, E.: Stability of the Lagrange-Galerkin method with nonexact integration. RAIRO Modél. Math. Anal. Numér. 22(4), 625–653 (1988)

    MATH  Google Scholar 

  28. Morton, K.W., Süli, E.: Evolution-Galerkin methods and their supraconvergence. Numer. Math. 71(3), 331–355 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nédélec, J.-C.: Mixed finite elements in R 3. Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nédélec, J.-C.: A new family of mixed finite elements in R 3. Numer. Math. 50(1), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38(3), 309–332 (1981/1982)

    Article  MathSciNet  Google Scholar 

  32. Priestley, A.: Exact projections and the Lagrange-Galerkin method: a realistic alternative to quadrature. J. Comput. Phys. 112(2), 316–333 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. rep. LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973)

  34. Rieben, R.N., White, D.A., Wallin, B.K., Solberg, J.M.: An arbitrary Lagrangian-Eulerian discretization of MHD on 3D unstructured grids. J. Comput. Phys. 226(1), 534–570 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Scheja, G., Storch, U.: Lehrbuch der Algebra. Teil 2. Mathematische Leitfäden. Teubner, Stuttgart (1988)

    Google Scholar 

  36. Schwarz, G.: Hodge Decomposition—A Method for Solving Boundary Value Problems. Lecture Notes in Mathematics, vol. 1607. Springer, Berlin (1995)

    MATH  Google Scholar 

  37. Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models: a review. Mon. Weather Rev. 119, 2206–2223 (1991)

    Article  Google Scholar 

  38. Süli, E., Ware, A.: A spectral method of characteristics for hyperbolic problems. SIAM J. Numer. Anal. 28(2), 423–445 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hiptmair.

Additional information

Communicated by Rolf Stenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heumann, H., Hiptmair, R., Li, K. et al. Fully discrete semi-Lagrangian methods for advection of differential forms. Bit Numer Math 52, 981–1007 (2012). https://doi.org/10.1007/s10543-012-0382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0382-4

Keywords

Mathematics Subject Classification

Navigation