BIT Numerical Mathematics

, Volume 50, Issue 4, pp 781–795

Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions

  • Michael J. Holst
  • Mats G. Larson
  • Axel Målqvist
  • Robert Söderlund
Open AccessArticle

DOI: 10.1007/s10543-010-0287-z

Cite this article as:
Holst, M.J., Larson, M.G., Målqvist, A. et al. Bit Numer Math (2010) 50: 781. doi:10.1007/s10543-010-0287-z

Abstract

In this paper we present a finite element discretization of the Joule-heating problem. We prove existence of solution to the discrete formulation and strong convergence of the finite element solution to the weak solution, up to a sub-sequence. We also present numerical examples in three spatial dimensions. The first example demonstrates the convergence of the method in the second example we consider an engineering application.

Keywords

Finite element methodsJoule heating problemConvergence analysis

Mathematics Subject Classification (2000)

65N3035J60
Download to read the full article text

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Michael J. Holst
    • 1
  • Mats G. Larson
    • 2
  • Axel Målqvist
    • 3
  • Robert Söderlund
    • 2
  1. 1.Department of MathematicsUniversity of California at San DiegoLa JollaUSA
  2. 2.Department of MathematicsUmeå UniversityUmeåSweden
  3. 3.Department of Information TechnologyUppsala UniversityUppsalaSweden