1.

K. Åhlander and H. Munthe-Kaas, *Eigenvalues for equivariant matrices*, J. Comput. Appl. Math. (2005). Available online via ScienceDirect.

2.

E. L. Allgower, K. Böhmer, K. Georg and R. Miranda, *Exploiting symmetry in boundary element methods*, SIAM J. Numer. Anal., 29 (1992), pp. 534–552.

3.

E. L. Allgower and A. F. Fässler, *Blockstructure and equivalence of matrices*, in Aspects
of Complex Analysis, Differential Geometry, Mathematical Physics and Applications,
pp. 19–34, World Scientific, 1999.

4.

E. L. Allgower and K. Georg, *Exploiting symmetry in numerical solving*, in Proceedings of the Seventh Workshop on Differential Equations and its Applications, C.-S. Chien, ed., Taichung, Taiwan, 1999.

5.

E. L. Allgower, K. Georg and R. Miranda, *Exploiting permutation symmetry with fixed points in linear equations*, in Lectures in Applied Mathematics, E. L. Allgower, K. Georg and R. Miranda, eds., vol. 29, American Mathematical Society, pp. 23–36, Providence, RI, 1993.

6.

E. L. Allgower, K. Georg, R. Miranda and J. Tausch, *Numerical exploitation of equivariance*, Z. Angew. Math. Mech., 78 (1998), pp. 185–201.

7.

T. Beth, *Generalized Fourier Transforms*, in Trends in Computer Algebra, Lect. Notes Comput. Sci., vol. 296, pp. 92–118, Springer, Berlin, 1988.

8.

M. Bonnet,

*Exploiting partial or complete geometrical symmetry in 3D symmetric Galerkin indirect BEM formulations*, Int. J. Numer. Methods Eng., 57 (2003), pp. 1053–1083.

Google Scholar9.

A. Bossavit, *Symmetry, groups, and boundary value poblems. a progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry*, Comput. Methods Appl. Mech. Eng., 56 (1986), pp. 167–215.

10.

A. Bossavit,

*Boundary value problems with symmetry and their approximation by finite elements*, SIAM J. Appl. Math., 53 (1993), pp. 1352–1380.

Google Scholar11.

A. Clausen, *Fast Fourier transforms for metabelian groups*, SIAM J. Comput., 18 (1989), pp. 55–63.

12.

A. Clausen and U. Baum, *Fast Fourier Transforms*, Wissenschaftsverlag, Mannheim, 1993.

13.

A. Clausen and M. Müller,

*Generating fast Fourier transforms of solvable groups*, J. Symb. Comput., 37 (2004), pp. 137–156.

Google Scholar14.

P. Diaconis, *Group representations in probability and statistics*, in Lecture Notes – Monograph Series, Institute of Mathematical Statistics, Hayward, CA, 1988.

15.

P. Diaconis and D. N. Rockmore,

*Efficient computation of the Fourier transform on finite groups*, J. Am. Math. Soc., 3 (1990), pp. 297–332.

Google Scholar16.

C. C. Douglas and J. Mandel, *Abstract theory for the domain reduction method*, Computing, 48 (1992), pp. 73–96.

17.

S. Egner and M. Puschel,

*Symmetry-based matrix factorization*, J. Symb. Comput., 37 (2004), pp. 157–186.

Google Scholar18.

A. F. Fässler and E. Stiefel, *Group Theoretical Methods and Their Applications*, Birkhäuser, Boston, 1992.

19.

K. Georg and R. Miranda, *Exploiting symmetry in solving linear equations*, in Bifurcation and Symmetry, E. L. Allgower, K. Böhmer and M. Golubisky, eds., ISNM, vol. 104, pp. 157–168, Birkhäuser, Basel, 1992.

20.

K. Georg and R. Miranda, *Symmetry aspects in numerical linear algebra with applications to boundary element methods*, in Lectures in Applied Mathematics, E. L. Allgower, K. Georg and R. Miranda, eds., vol. 29, pp. 213–228, American Mathematical Society, Providence, RI, 1993.

21.

K. Georg and J. Tausch, *A generalized Fourier transform for boundary element methods with symmetries*, Technical report, Colorado State University, Ft. Collins, Colorado, 1994.

22.

G. James and M. Liebeck, *Representations and Characters of Groups*, Cambridge University Press, 2nd edn., 2001. ISBN 052100392X.

23.

M. Karpovsky, *Fast Fourier transforms on finite non-abelian groups*, IEEE Transact. Comput., 10 (1977), pp. 1028–1030.

24.

M. Ljungberg and K. Åhlander, *Generic Programming Aspects of symmetry exploiting numerical software*, in Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004, Jyväskylä, 24–28 July 2004, P. Neittaanmäki et al., eds., 2004. Also available as Technical Report 2004-020 from the Department of Information Technology, Uppsala University.

25.

J. S. Lomont, *Applications of Finite Groups*, Academic Press, New York, 1959.

26.

D. K. Maslen,

*The efficient computation of Fourier transforms on the symmetric group*, Math. Comput., 67 (1998), pp. 1121–1147.

Google Scholar27.

D. K. Maslen and D. N. Rockmore, *Generalized FFTs – a survey of some recent results*, in Proceedings of the 1995 DIMACS Workshop on Groups and Computation, L. Finkelstein and W. Kantor, eds., June 1997, pp. 183–237.

28.

D. K. Maslen and D. N. Rockmore,

*Separation of variables and the computation of Fourier transforms on finite groups*, J. Am. Math. Soc., 10 (1997), pp. 169–214.

Google Scholar29.

H. Munthe-Kaas, *Symmetric FFTs; a general approach*, in Topics in linear algebra for vector- and parallel computers, PhD thesis, NTNU, Trondheim, Norway, 1989. Available at http://hans.munthe-kaas.no.

30.

D. N. Rockmore, *Fast Fourier analysis for abelian group extensions*, Adv. Appl. Math., 11 (1990), pp. 164–204.

31.

D. N. Rockmore, *Fast Fourier-transforms for wreath–products*, Appl. Comput. Harmonic Anal., 2 (1995), pp. 279–292.

32.

D. N. Rockmore, *Some applications of generalized FFTs*, in Proceedings of the 1995 DIMACS Workshop on Groups and Computation, L. Finkelstein and W. Kantor, eds., June 1997, pp. 329–369.

33.

J. P. Serre, *Linear Representations of Finite Groups*, Springer, 1977. ISBN 0387901906.

34.

L. Stiller, *Exploiting symmetry on parallel architectures*, PhD thesis, Johns Hopkins University, 1995.

35.

J. Tausch, *Equivariant preconditioners for boundary element methods*, SIAM Sci. Comput., 17 (1996), pp. 90–99.