Skip to main content
Log in

The series, the network, and the tree: changing metaphors of order in nature

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

The history of biological systematics documents a continuing tension between classifications in terms of nested hierarchies congruent with branching diagrams (the ‘Tree of Life’) versus reticulated relations. The recognition of conflicting character distribution led to the dissolution of the scala naturae into reticulated systems, which were then transformed into phylogenetic trees by the addition of a vertical axis. The cladistic revolution in systematics resulted in a representation of phylogeny as a strictly bifurcating pattern (cladogram). Due to the ubiquity of character conflict—at the genetic or morphological level, or at any level in between—some characters will necessarily have to be discarded (qua noise) in favor of others in support of a strictly bifurcating phylogenetic tree. Pattern analysts will seek maximal congruence in the distribution of characters (ultimately of any kind) relative to a branching tree-topology; process explainers will call such tree-topologies into question by reference to incompatible evolutionary processes. Pattern analysts will argue that process explanations must not be brought to bear on pattern reconstruction; process explainers will insist that the reconstructed pattern requires a process explanation to become scientifically relevant, i.e., relevant to evolutionary theory. The core question driving the current debate about the adequacy of the ‘Tree of Life’ metaphor seems to be whether the systematic dichotomization of the living world is an adequate representation of the complex evolutionary history of global biodiversity. In ‘Questioning the Tree of Life’, it seems beneficial to draw at least four conceptual distinctions: pattern reconstruction versus process explanation as different epistemological approaches to the study of phylogeny; open versus closed systems as expressions of different kinds of population (species) structures; phylogenetic trees versus cladograms as representations of evolutionary processes versus patterns of relationships; and genes versus species as expressions of different levels of causal integration and evolutionary transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notebook B, p. 36, Cambridge University Library, #DAR121.

  2. Bonnet was introduced to Locke’s philosophy by his teacher, the Genevan mathematician and philosopher Gabriel Cramer (Savioz 1948).

  3. All translations of Tschulok (1910, 1922) are mine.

  4. Patterson’s talk, delivered at the 2nd Annual Willi Hennig Society Meeting on October 3, 1981, in Ann Arbor, MI, was transcribed and made available by D.M. Williams, Dept. of Botany, The Natural History Museum, London.

  5. The test was based on the assumption that characters used to infer species relationships are unique (no convergence occurs) and un-reversed (character transformation is irreversible)—two desiderata that are both unwarranted.

  6. For the ‘Questioning the Tree of Life’ initiative, see http://centres.exeter.ac.uk/eugenis/research/QuestioningtheTreeofLife.htm.

References

  • Abel O (1929) Paläobiologie und Stammesgeschichte. G. Fischer, Jena

    Google Scholar 

  • Agassiz L (1859) An essay on classification. Longman, Brown, Green, Longmans and Roberts, London

    Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. PNAS 100:7678–7683

    Article  Google Scholar 

  • Armstrong DM (1997) A world of states of affairs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baer KE (1828) Ueber Entwickelungsgeschichte der Thiere. Beobachtung und Reflexion, Theil I. Gebr. Bornträger, Königsberg

    Google Scholar 

  • Bapteste E, Boucher Y (2008) Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 16:200–207

    Article  Google Scholar 

  • Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF (2005) Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 5:33. doi:10.1186/1471-2148-5-33

    Article  Google Scholar 

  • Barsanti G (1992) La scala, la mappa, l’albero. Imagini e classificazioni della natura fra Sei e Ottocento. Sansoni, Firenze

    Google Scholar 

  • Beatty J (1982) Classes and cladists. Syst Zool 31:25–34

    Article  Google Scholar 

  • Beatty J (1995) The evolutionary contingency thesis. In: Wolters G, Lennox JG (eds) Concepts, theories, and rationality in the biological sciences. University of Pittsburgh Press, Pittsburgh, pp 45–81

    Google Scholar 

  • Bergthorsson U, Richardson AO, Young GLJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. PNAS 101:17747–17752

    Article  Google Scholar 

  • Bloch K (1956) Zur Theorie der naturwissenschaftlichen Systematik, unter besonderer Berücksichtigung der Biologie. Brill, Leiden

    Google Scholar 

  • Bonde N (1974) [Review of] Interrelationships of fishes, Greenwood, P.H., R.S. Miles, C. Patterson (eds.). Syst Zool 23:562–569

    Article  Google Scholar 

  • Bonnet Ch (1745) Traîté d’Insectologie. Première Partie. Durand Librairie, Paris

    Google Scholar 

  • Bonnet Ch (1764) Contemplation de la Nature, vol 1. Marc-Michel Rey, Amsterdam

    Google Scholar 

  • Bonnet Ch (1768) Considérations sur les Corps Organisés, vol 1, 2nd edn. Marc-Michel Rey, Amsterdam

    Google Scholar 

  • Bonnet Ch (1769) La Palingénésie Philosophique, vol 1. C. Philibert and B. Chirol, Geneva

    Google Scholar 

  • Boucher Y, Bapteste E (2009) Revisiting the concept of lineage in prokaryotes: a phylogenetic perspective. Bioessays 31:526–536

    Article  Google Scholar 

  • Bowler PJ (1990) Charles Darwin. The man and his influence. Basil Blackwell, Oxford

    Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kue A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Schnitzler Parker M, Petit JLL, Porcel BM, Poulsen N, Robinson M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IVV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  Google Scholar 

  • Boyd R (1999) Homeostasis, species, and higher taxa. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 141–185

    Google Scholar 

  • Brady RH (1985) On the independence of systematics. Cladistics 1:113–126

    Article  Google Scholar 

  • Bredekamp H (2005) Darwins Korallen. Wagenbach Verlag, Berlin

    Google Scholar 

  • Brigandt I (2009) Natural kinds in evolution and systematics. Acta Biotheor 57:77–97

    Article  Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology, and behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Brower AVZ (2000) Evolution is not a necessary assumption of cladistics. Cladistics 16:143–154

    Article  Google Scholar 

  • Brower AVZ, DeSalle R, Vogler A (1996) Gene trees, species trees, and systematics. Annu Rev Ecol Syst 27:423–450

    Article  Google Scholar 

  • Brundin L (1966) Transantarctic relationships and their significance, as evidenced by chironomid midges. K svenska VetenskAkad Handl 4(11):1–472

    Google Scholar 

  • Buffon GLL (1749) Histoire Naturelle, Générale et Particulière, vol 1. Imprimerie Royale, Paris

    Google Scholar 

  • Chambers R (1844) Vestiges of the natural history of creation. John Churchill, London

    Google Scholar 

  • Craw R (1992) Margins of cladistics: identity, difference and place in the emergence of phylogenetic systematics, 1864–1975. In: Griffiths P (ed) Trees of life: essays in philosophy of biology. Kluwer, Dordrecht, pp 65–107

    Google Scholar 

  • Cuvier G (1817) Le Règne Animal distribué d’après son Organisation, vol 1. Deterville, Paris

    Google Scholar 

  • Daudin H (1926a) Cuvier et Lamarck. Les Classes Zoologiques et l’Idée de la Série Animale (1790–1830). Félix Alcan, Paris

    Google Scholar 

  • Daudin H (1926b) De Linné à Jussieu. Méthode de la Classification et l’Idée de la Série en Botanique et en Zoologie (1740–1790). Félix Alcan, Paris

    Google Scholar 

  • Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678

    Article  Google Scholar 

  • deBeer G (1960) Darwin’s notebooks on transmutation of species. Bull Br Mus Nat Hist (Hist Ser) 2:23–73

    Google Scholar 

  • Denker E, Bapteste E, Le Guyader H, Manuel M, Rabet N (2008) Horizontal gene transfer and the evolution of the cnidarian stinging cells. Curr Biol 18(18):R858–R859

    Article  Google Scholar 

  • deQueiroz K (1999) The general lineage concept of species and the defining properties of the species category. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 49–89

    Google Scholar 

  • Dollo L (1895) Sur la phylogénie des dipneustes. Bull Soc Belge Géol Paléont Hydrol 9:97–128

    Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    Article  Google Scholar 

  • Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Philos Trans R Soc Lond B364:2221–2228

    Article  Google Scholar 

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the Tree of Life Hypothesis. PNAS 104:2043–2049

    Article  Google Scholar 

  • Duméril AMC (1806) Zoologie Analytique, ou Méthode Naturelle de Classification, 8 vols. Allais Librairie, Paris

    Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  Google Scholar 

  • Dupuis C (1984) Willi Hennig’s impact on taxonomic thought. Annu Rev Ecol Syst 15:1–24

    Google Scholar 

  • Ereshefsky M (2010) Microbiology and the species problem. Biol Philos (this issue—details to follow)

  • Funk V (1985) Phylogenetics, patterns, and hybridization. Ann Missouri Bot Gard 72:596–635

    Article  Google Scholar 

  • Gaffney ES (1979) An introduction to the logic of phylogeny reconstruction. In: Cracraft J, Eldredge N (eds) Phylogenetic analysis and paleontology. Columbia University Press, New York, pp 79–111

    Google Scholar 

  • Gardner S (1999) Kant and the critique of pure reason. Routledge, London

    Google Scholar 

  • Ghiselin M (1974) A radical solution to the species problem. Syst Zool 23:536–544

    Article  Google Scholar 

  • Ghiselin M (1997) Metaphysics and the Origin of Species. SUNY Press, Albany

    Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  Google Scholar 

  • Gogarten P (2000) Horizontal gene transfer: a new paradigm for biology. Esalen Center for Theory and Research Conference. http://www.esalenctr.org/display/confpage.cfm?confid=10&pageid=105&pgtype=1. Retrieved on 03-24-2009

  • Gogarten P, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  Google Scholar 

  • Gogarten P, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  Google Scholar 

  • Grant PR, Grant BR, Markert JA, Keller LF, Petren K (2004) Convergent evolution of Darwin’s finches caused by introgressive hybridization and selection. Evolution 58:1588–1599

    Google Scholar 

  • Greenwood PH, Miles RS, Patterson C (1973) Interrelationships of fishes. Academic Press, London

    Google Scholar 

  • Griffiths PE (1999) Squaring the circle: natural kinds with historical essences. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 209–228

    Google Scholar 

  • Günther K (1956) Systemlehre und Stammesgeschichte. Fortschr Zool NF 10:33–278

    Google Scholar 

  • Günther K (1962) Systematik und Stammengeschichte der Thiere, 1954–1959. Fortschr Zool NF 14:268–547

    Google Scholar 

  • Hennig W (1950) Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • Hennig W (1957) Systematik und Phylogenese. In: Hannemann HJ (ed) Bericht über die Hundertjahrfeier der Deutschen Entomologischen Gesellschaft Berlin. Akademie Verlag, Berlin, pp 50–71

    Google Scholar 

  • Hennig W (1965) Phylogenetic systematics. Annu Rev Entomol 10:97–116

    Article  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hull DL (1976) Are species really individuals. Syst Zool 25:174–191

    Article  Google Scholar 

  • Hull DL (1979) The limits of cladism. Syst Zool 28:416–440

    Article  Google Scholar 

  • Hull DL (1988) Science as a process. An evolutionary account of the social and conceptual development of science. The University of Chicago Press, Chicago

    Google Scholar 

  • Hull DL (1989) The metaphysics of evolution. State University of New York Press, Albany

    Google Scholar 

  • Hull DL (1999) On the plurality of species: questioning the party line. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 23–48

    Google Scholar 

  • Humphries CJ (1983) Primary data in hybrid analysis. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York, pp 89–103

    Google Scholar 

  • Kluge AG (2003) The repugnant and the mature in phylogenetic inference: atemporal similarity and historical identity. Cladistics 19:356–368

    Article  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B361:1929–1940

    Article  Google Scholar 

  • Kuhn TS (1974) Logic of discovery or psychology of research. In: Lakatos I, Musgrave A (eds) Criticism and the growth of knowledge. Cambridge University Press, Cambridge, pp 1–23

    Google Scholar 

  • Lauder GV (1990) Functional morphology and systematics: studying functional patterns in an historical context. Annu Rev Ecol Syst 21:317–340

    Article  Google Scholar 

  • Laurin M, Bryant HN (2009) The third meeting on the International Society for Phylogenetic Nomenclature: a report. Zool Scr 38:333–337

    Article  Google Scholar 

  • Lienau EK, DeSalle R (2009) Evidence, content and corroboration and the tree of life. Acta Biotheor 57:187–199

    Article  Google Scholar 

  • Loftus BL, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhatttacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Gullién N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    Article  Google Scholar 

  • Lorenz K (1941a) Kants Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter Deutsch Philos 15:94–125

    Google Scholar 

  • Lorenz K (1941b) Vergleichende Bewegungsstudien an Anatinen. J Ornithol 89(Suppl):194–293

    Google Scholar 

  • Lovejoy AO (1936) The great chain of being. Harvard University Press, Cambridge

    Google Scholar 

  • Lovejoy AO (1959) Recent criticism of the Darwinian theory of recapitulation: its grounds and its initiator. In: Glass B, Temkin O, Straus WK Jr (eds) Forerunners of Darwin, 1745–1859. The Johns Hopkins University Press, Baltimore, pp 438–458

    Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Google Scholar 

  • Magee B (1973) Popper. Fontana, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press at Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1969) Principles of systematic zoology. McGraw-Hill, New York

    Google Scholar 

  • Mayr E (1974) Cladistic analysis or cladistic classification. Zeitschr Zool Syst Evolutforsch 12:94–128

    Article  Google Scholar 

  • Mayr E (1982) The growth of biological thought. The Belknap Press at Harvard University Press, Cambridge

    Google Scholar 

  • Miles RS (1973) Relationships of acanthodians. In: Greenwood PH, Miles RS, Patterson C (eds) Interrelationships of fishes. Academic Press, London, pp 63–103

    Google Scholar 

  • Miles RS (1975) The relationships of the Dipnoi. In: Lehman JP (ed) Problèmes Actuels de Paléontologie (Evolution des Verttébrés). Colloques Internationaux du Centre National de la Rercherche Scientifique, Paris, pp 133–148

    Google Scholar 

  • Miller H (1849) Footprints of the Creator, or the Asterolepis of Stromness. Johnstone and Hunter, London

    Google Scholar 

  • Millhauser M (1959) Just before Darwin. Wesleyan University Press, Middletown

    Google Scholar 

  • Müller-Wille S (2007) Collection and collation: theory and practice of Linnean botany. Stud Hist Philos Biol Biomed Sci 38:541–562

    Article  Google Scholar 

  • Nedelcu AM, Miles IH, Fagir AM, Karol K (2008) Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 21:1852–1860

    Article  Google Scholar 

  • Nelson G (2004) Cladistics: its arrested development. In: Williams DM, Forey PL (eds) Milestones in systematics. CRC Press, Boca Raton, pp 127–147

    Google Scholar 

  • Nelson G (2007) Patterson, Colin. In: Koertge N (ed) New dictionary of scientific biography, vol 6, 2nd edn. Gale Cengage, Farmington Hills, pp 30–34

    Google Scholar 

  • Okasha S (2006) Evolution and the levels of selection. Clarendon Press, Oxford

    Book  Google Scholar 

  • Ospovat D (1981) The development of Darwin’s theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Panchen AL (1992) Classification, evolution, and the nature of biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Patterson C (1981) Significance of fossils in determining evolutionary relationships. Annu Rev Ecol Syst 12:195–223

    Article  Google Scholar 

  • Patterson C (1982) Morphological characters and homology. In: Joysey K, Friday AE (eds) Problems of phylogenetic reconstruction. Academic Press, London, pp 21–74

    Google Scholar 

  • Patterson C (2002) Evolution and creationism. The Linnean 18:15–32

    Google Scholar 

  • Platnick NI (1977) Cladograms, phylogenetic trees, and hypothesis testing. Syst Zool 26:438–442

    Article  Google Scholar 

  • Popper KR (1959 [1992]) The logic of scientific discovery. Routledge and Kegan Paul, London

  • Popper KR (1963) Conjectures and refutations: the growth of scientific knowledge. Routledge and Kegan Paul, London

    Google Scholar 

  • Rensch B (1947) Neuere Probleme der Abstammungslehre: Die Transspezifische Evolution. Enke, Stuttgart

    Google Scholar 

  • Rensch B (1968) Biophilosophie auf erkenntnistheoretischer Grundlage (Panpsychistischer Identismus). Fischer, Stuttgart

    Google Scholar 

  • Rensch B (1979) Lebensweg eines Biologen in einem turbulenten Jahrhundert. Fischer, Stuttgart

    Google Scholar 

  • Retchless AC, Lawrence JG (2007) Temporal fragmentation of species in bacteria. Science 317:1093–1096

    Article  Google Scholar 

  • Richards RJ (1992) The meaning of evolution. The morphological construction and ideological reconstruction of Darwin’s theory. University of Chicago Press, Chicago

    Google Scholar 

  • Richards RJ (2002) The romantic conception of life. Science and philosophy in the age of Goethe. University of Chicago Press, Chicago

    Google Scholar 

  • Richards RJ (2008) The tragic sense of life. Ernst Haeckel and the struggle over evolutionary thought. University of Chicago Press, Chicago

    Google Scholar 

  • Rieppel O (1986) Species are individuals: a review and critique of the argument. Evol Biol 20:283–317

    Google Scholar 

  • Rieppel O (2004) The language of systematics, and the philosophy of ‘total evidence’. Syst Biodivers 2:9–19

    Article  Google Scholar 

  • Rieppel O (2005) The philosophy of total evidence and its relevance for phylogenetic inference. Pap Avulsos Zool 45:77–89

    Google Scholar 

  • Rieppel O (2006a) On concept formation in systematics. Cladistics 22:474–492

    Article  Google Scholar 

  • Rieppel O (2006b) Willi Hennig on transformation series: metaphysics and epistemology. Taxon 55:377–385

    Article  Google Scholar 

  • Rieppel O (2007a) Parsimony, likelihood, and instrumentalism in systematics. Biol Philos 22:141–144

    Article  Google Scholar 

  • Rieppel O (2007b) The metaphysics of Hennig’s phylogenetic systematics: substance, events and laws of nature. Syst Biodivers 5:345–360

    Article  Google Scholar 

  • Rieppel O (2007c) Species: kinds of individuals or individuals of a kind. Cladistics 23:373–384

    Article  Google Scholar 

  • Rieppel O (2008a) Total evidence in phylogenetic systematics. Biol Philos. doi:10.1007/s10539-008-9122-1

  • Rieppel O (2008b) Re-writing Popper’s philosophy of science for systematics. Hist Philos Life Sci 30:317–340

    Google Scholar 

  • Rieppel O (2008c) Hypothetico-deductivism in systematics: fact or fiction? Pap Avulsos Zool 48:263–273

    Google Scholar 

  • Rieppel O (2009) Species as a process. Acta Biotheor 57:33–49

    Article  Google Scholar 

  • Rieppel O, Rieppel M, Rieppel L (2006) Logic in systematics. J Zool Syst Evol Res 44:186–192

    Article  Google Scholar 

  • Russell ES (1916) Form and function. A contribution to the history of animal morphology. John Murray, London

    Google Scholar 

  • Savioz R (1948) Mémoires autobiographiques de Charles Bonnet de Genève. Librairie Philosophique J. Vrin, Paris

    Google Scholar 

  • Serres E (1824) Explication du système nerveux des animaux invertébrés. Ann Sci Nat Paris 3:377–380

    Google Scholar 

  • Simpson GG (1961) Principles of animal taxonomy. Columbia University Press, New York

    Google Scholar 

  • Stamos DN (2007) Popper, laws, and the exclusion of biology from genuine science. Acta Biotheor 55:357–375

    Article  Google Scholar 

  • Steiner H (1946) Sinai Tschulok (16. April 1875 bis 6. Dezember 1945). Vierteljahresschr Natforsch Ges Zürich 91:70–72

    Google Scholar 

  • Stevens PF (1994) The development of biological systematics. Columbia University Pess, New York

    Google Scholar 

  • Striepen B, Pruijssers AJP, Huang J, Li C, Gubbels MJ, Umejiego NN, Hedstrom L, Kissinger JC (2004) Gene transfer in the evolution of parasite nucleotide biosynthesis. PNAS 101:3154–3159

    Article  Google Scholar 

  • Takhtajan A (1959) Die Evolution der Angiospermen. Fischer, Jena

    Google Scholar 

  • Trembley A (1744) Mémoires Pour Servir à l’Histoire d’un Genre de Polypes d’Eau Douce. Jean & Herman Verbeek, Leiden

    Google Scholar 

  • Tschulok S (1910) Das System der Biologie in Forschung und Lehre. Fischer, Jena

    Google Scholar 

  • Tschulok S (1922) Deszendenzlehre. Fischer, Jena

    Google Scholar 

  • Wagner WH (1983) Reticulistics: the recognition of hybrids and their role in cladistics and classification. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York, pp 63–79

    Google Scholar 

  • Wagner PJ, Erwin DH (1995) Phylogenetic patterns as tests of speciation models. In: Erwin DH, Anstey RL (eds) New approaches to speciation in the fossil record. Columbia University Press, New York, pp 87–122

    Google Scholar 

  • Wheeler QD, Meier R (2000) Species concepts and phylogenetic theory. A debate. Columbia University Press, New York

    Google Scholar 

  • Williams PA (1992) Confusion in cladism. Synthese 91:135–152

    Article  Google Scholar 

  • Williams DM, Ebach MC (2007) Foundations of systematics and biogeography. Springer, Berlin

    Google Scholar 

  • Williams DM, Scotland RW, Humphries CJ, Siebert DJ (1996) Confusion in philosophy: a comment on Williams (1992). Synthese 108:127–136

    Article  Google Scholar 

  • Wilson EO (1965) A consistency test for phylogenies based on contemporaneous species. Syst Zool 14:214–220

    Article  Google Scholar 

  • Wilson J (1999) Biological individuality. The identity and persistence of living entities. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodger JH (1952) From biology to mathematics. Br J Philos Sci 3:1–21

    Article  Google Scholar 

  • Ziehen Th (1934) Erkenntnistheorie. Zweite Auflage. Erster Teil. Allgemeine Grundlegung der Erkennnistheorie. Spezielle Erkenntnistheorie der Empfindungstatsachen einschliesslich Raumtheorie. Fischer, Jena

    Google Scholar 

Download references

Acknowledgments

This paper was first presented at the workshop, Perspectives on the Tree of Life, sponsored by the Leverhulme Trust and held in Halifax, Nova Scotia, July, 2009. I thank Eric Bapteste for invaluable guidance to the literature; he and two anonymous reviewers offered much appreciated comments and criticism of an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Rieppel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieppel, O. The series, the network, and the tree: changing metaphors of order in nature. Biol Philos 25, 475–496 (2010). https://doi.org/10.1007/s10539-010-9216-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-010-9216-4

Keywords

Navigation