Skip to main content
Log in

Europium improves the transport of quercetin through Arabidopsis thaliana

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effect of a rare earth element europium (Eu) on the long-distance transport of a plant defence compound quercetin (Q) was investigated. The complex Q/Eu3+ was synthesized in a HEPES buffer and tested for its transport ability through Arabidopsis thaliana and its ability to interact with target molecules in plant cells. Our results show that complexation with Eu3+ enhanced the transport of Q through Arabidopsis roots. During the transport, the complex degraded and released a free Q to tissues where Q was originally not available. Thus, the plant became better supplied with the defensive compound Q. The obtained spectrophotometric data imply that one of the reasons for the Q/Eu3+ degradation was the interaction of the complex with double stranded RNAs (dsRNAs) present in Arabidopsis. Since dsRNAs are replicative forms of plant RNA viruses, the ability of Q/Eu3+ to release a free Q in their presence suggests further investigation of this complex as a potential antiviral agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CMVsat:

satellite-associated Cucumber mosaic virus

DPBA:

diphenylboric acid-2 aminoethyl ester

dsRNA:

double-stranded RNA

Eu:

europium

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

Q:

quercetin

ssRNA:

single-stranded RNA

References

  • Ahmed, N., Maekawa, M., Noda, K.: Anthocyanin accumulation and expression pattern of anthocyanin biosynthesis genes in developing wheat coleoptiles. — Biol. Plant. 53: 223–228, 2009.

    Article  CAS  Google Scholar 

  • Ahn, S.Y., Kim, S.A., Cho, K.S., Yun, H.K.: Expression of genes related to flavonoid and stilbene synthesis as affected by signaling chemicals and Botrytis cinerea in grapevines. — Biol. Plant. 58: 758–767, 2014.

    Article  CAS  Google Scholar 

  • Anderegg, G., Ripperger, H.: Correlation between metal complex formation and biological activity of nicotianamine analogues. — J. chem. Soc. chem. Commun. 10: 647–650, 1989.

    Article  Google Scholar 

  • Benes, I., Schreiber, K., Ripperger, H., Kirsceiss, A.: Metal complex formation of nicotianamine, a possible phytosiderophore. — Experientia 39: 261–262, 1983.

    Article  CAS  Google Scholar 

  • Buer, C.S., Muday, G.K.: The transparent testa 4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. — Plant Cell 16: 1191–1205, 2004.

  • Buer, C.S., Muday, G.K., Djordjevic, M.A.: Flavonoids are differentially taken up and transported long distances in Arabidopsis. — Plant Physiol. 145: 478–490, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson, E.E.: Natural products as chemical probes. — ACS Chem. Biol. 5: 639–653, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, S.M., Li, C.H., Zhu, X.R., Deng, Y.M., Sun, W., Wang, L.S., Chen, F.D., Zhang, Z.: The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. — Biol. Plant. 56: 458–464, 2012.

    Article  CAS  Google Scholar 

  • Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Misson, J., Schikora, A., Czernic, P., Mari, S.: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. — Ann. Bot. 103: 1–11, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodds, J.A., Morris, T.J., Jordan, R.L.: Plant viral doublestranded RNA. — Annu. Rev. Phytopathol. 22: 151–168, 1984.

    Article  CAS  Google Scholar 

  • Dolatabadi, J.E.N.: Molecular aspects on the interaction of quercetin and its metal complexes with DNA. — Int. J. biol. Macromol. 48: 227–233, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Emsley, J.: An A-Z guide to the elements. — In: Emsley, J. (ed.): Nature’s Building Blocks. Pp. 141–142. Oxford University Press, Oxford 2003.

    Google Scholar 

  • Erlund, I.: Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, and epidemiology. — Nutr. Res. 24: 851–874, 2004.

    Article  CAS  Google Scholar 

  • Fellows, R.J., Wang, Z.M., Ainsworth, C.C.: Europium uptake and partitioning in oat (Avena sativa) roots as studied by laser-induced fluorescence spectroscopy and confocal microscopy profiling technique. — Environ. Sci. Technol. 37: 5247–5253, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Frangne, N., Eggmann, T., Koblischke, C., Weissenbock, G., Martinoia, E., Klein, M.: Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H+-antiport and ATP-binding cassette-type mechanisms. — Plant Physiol. 128: 726–733, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • French, C.J., Towers, G.H.N.: Inhibition of infectivity of potatovirus X by flavonoids. — Phytochemistry 31: 3017–3020, 1992.

    Article  CAS  Google Scholar 

  • Gao, Y.S., Zeng, F.L., Yi, A., Ping, S., Jing, L.H.: Research of the entry of rare earth elements Eu3+ and La3+ into plant cell. — Biol. Trace Element Res. 91: 253–265, 2003.

    Article  CAS  Google Scholar 

  • González-Álvarez, M., Alzuet, G., Garcia-Gimenez, J.L., Macias, B., Borras, J.: Biological activity of flavonoids copper complexes. — Zeit. anorg. allg. Chem. 631: 2181–2187, 2005.

    Article  Google Scholar 

  • Jacobs, M., Rubery, P.H.: Naturally-occurring auxin transport regulators. — Science 241: 346–349, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Kearney, C.M., Gonsalves, D., Provvidenti, R.: A severe strain of Cucumber mosaic virus from China and its associated satellite RNA. — Plant Dis. 74: 819–823, 1990.

    Article  CAS  Google Scholar 

  • Kostyuk, V.A., Potapovich, A.I., Strigunova, E.N., Kostyuk, T.V., Afanas’ev, I.B.; Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. — Arch. Biochem. Biophys. 428: 204–208, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kostyuk, V.A., Potapovich, A.I., Vladykovskaya, E.N., Korkina, L.G., Afanas’ev, I.B.: Influence of metal ions on flavonoid protection against asbestos-induced cell injury. — Arch. Biochem. Biophys. 385: 129–137, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Krcatović, E., Rusak, G., Bezić, N., Krajačić, M.: Inhibition of tobacco mosaic virus infection by quercetin and vitexin. — Acta virol. 52: 119–124, 2008.

    PubMed  Google Scholar 

  • Leif, R.C., Vallarino, L.M., Becker, M.C., Yang, S.: Increasing the luminescence of lanthanide complexes. — Cytometry Part A 69: 767–778, 2006.

    Article  Google Scholar 

  • Levizou, E., Karageorgou, P., Petropoulou, Y., Grammatikopoulos, G, Manetas, Y.: Induction of ageotropic response in lettuce radicle growth by epicuticular flavonoid aglycons of Dittrichia viscosa. — Biol. Plant. 48: 305–307, 2004.

    Article  CAS  Google Scholar 

  • Maeder, M., Zuberbühler, A.D.: Non linear least-squares fitting of multivariate absorption data. — Anal. Chem. 62: 2220–2224, 1990.

    Article  CAS  Google Scholar 

  • Malhotra, B., Onyilagha, J.C., Bohm, B.A., Towers, G.H.N., James, D., Harborne, J.B., French, C.J.: Inhibition of tomato ring spot virus by flavonoids. — Phytochemistry 43: 1271–1276, 1996.

    Article  CAS  Google Scholar 

  • Marinić, M., Piantanida, I., Rusak, G., Žinić, M.: Interactions of quercetin and its lanthane complex with double stranded DNA/RNA and single stranded RNA: spectrophotometric sensing of poly G. — J. Inorg. Biochem. 100: 288–298, 2006.

    Article  PubMed  Google Scholar 

  • Quideau, S., Deffieux, D., Douat-Casassus, C., Pouysegu, L.: Plant polyphenols: chemical properties, biological activities, and synthesis. — Angew. Chem. Int. Edit. 50: 586–621, 2011.

    Article  CAS  Google Scholar 

  • Rusak, G., Černi, S., Polančec, D.S., Ludwig-Müller, J.: The responsiveness of the IAA2 promoter to IAA and IBA is differentially affected in Arabidopsis roots and shoots by flavonoids. — Biol. Plant. 54: 403–414, 2010.

    Article  CAS  Google Scholar 

  • Rusak, G., Krajačić, M., Krsnik-Rasol, M., Gutzeit, H.O.: Quercetin influences response in Nicotiana megalosiphon infected by satellite-associated cucumber mosaic virus. — J. Plant Dis. Protect. 114: 145–150, 2007.

    CAS  Google Scholar 

  • Rusak, G., Krajačić, M., Pleše, N.: Inhibition of tomato bushy stunt virus infection using a quercetagetin flavonoid isolated from Centaurea rupestris L. — Antivir. Res. 36: 125–129, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Rusak, G., Piantanida, I., Bretschneider, S., Ludwig-Müller, J.: Complex formation of quercetin with lanthanum enhances binding to plant viral satellite double stranded RNA. — J. Inorg. Biochem. 103: 1597–1601, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Škorić, D., Krajačić, M., Barbarossa, L., Cillo, F., Grieco, F., Šarić, A., Gallitelli, D.: Occurence of Cucumber mosaic cucumovirus with satellite RNA in lethal necrosis affected tomatoes in Croatia. — J. Phytopathol. 144: 543–549, 1996.

    Article  Google Scholar 

  • Stafford, H.A.: Flavonoid evolution — an enzymatic approach. — Plant Physiol. 96: 680–685, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian, H.E., Gao, Y.S., Li, F.M., Zeng, F.L.: Effects of europium ions (Eu3+) on the distribution and related biological activities of elements in Lathyrus sativus L. roots. — Biol. Trace Element Res. 93: 257–269, 2003.

    Article  CAS  Google Scholar 

  • Tian, H.E., Gao, Y.S., Zeng, F.L., Li, F.M., Shan, L.: Effects of Eu3+ on the metabolism of aminoacid and protein in xerophytic Lathyrus sativus L. — Biol. Trace Element. Res. 105: 257–267, 2005.

    Article  CAS  Google Scholar 

  • Wang, S.X., Zhang, F.J., Feng, Q.P., Li, Y.L.: Synthesis, characterization, and antibacterial activity of transition metal complexes with 5-hydroxy-7,4′-dimethoxyflavone. — J. Inorg. Biochem. 46: 251–257, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Ward, F.E., Garling, D.L., Buckler, R.T., Lawler, D.M., Cummings, D.P.: Antimicrobial 3-methyleneflavanones. — J. Med. Chem. 24: 1073–1077, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Woźnicka, E., Kopacz, M., Umbreit, M., Klos, J.: New complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin. — J. Inorg. Biochem. 101: 774–782, 2007.

    Article  PubMed  Google Scholar 

  • Zeng, F.L., Tian, H.E., Wang, Z.P., An, Y., Gao, F.Y., Zhang, L.J., Li, F.M., Shan, L.: Effect of rare earth element europium on amaranthin synthesis in Amaranthus caudatus seedlings. — Biol. Trace Element Res. 93: 271–282, 2003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Šola or I. Crnolatac.

Additional information

Acknowledgements: This work was financially supported by the Ministry of Science, Education and Sport of Croatia (098-0982914-2918 and broj Rusak projekta) The authors are grateful to Dr. M. HadŽija, the Laboratory for Molecular Endocrinology and Transplantation, Ruđer Bošković Institute, for help with a fluorescence microscope.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šola, I., Piantanida, I., Crnolatac, I. et al. Europium improves the transport of quercetin through Arabidopsis thaliana . Biol Plant 59, 554–559 (2015). https://doi.org/10.1007/s10535-015-0508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0508-z

Additional key words

Navigation