Skip to main content
Log in

Marker-trait associations for survival, growth, and flowering components in Eucalyptus cladocalyx under arid conditions

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Understanding the basis of the genetic variations responsible for the complex traits found in Eucalyptus cladocalyx under arid environmental conditions is crucial for designing genetic architecture studies. Forty-five half-sib families from Australia were used to identify inter-simple sequence repeat (ISSR) markers that are associated with growth (height, diameter at breast height, and stem straightness), flowering traits (flowering intensity, flowering precocity, reproductive capacity, and late flowering) and tree survival under arid conditions in southern Atacama Desert, Chile. Each DNA pellet consisted of a pool of five trees from each family. ISSR markers were associated with all the traits studied and accounted for 9.8 to 23.4 % of the phenotypic variation. Several loci were associated with more than one trait. For example, UBC810(450–500 bp), ISO1(600–610 bp), and TGT9(780–800 bp) were associated with three of the traits studied. These identified genomic regions may contribute to the increase of the efficiency of the conventional tree breeding program for E. cladocalyx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

DBH:

diameter at breast height

EF:

early flowering

FI:

flowering intensity

HT:

total height

ISSR:

inter simple sequence repeat

LF:

late flowering

PCoA:

principal coordinates analysis

RC:

reproductive capacity

ST:

stem straightness

TS:

survival

References

  • Balasaravanan, T., Chezhian, P., Kamalakannan, R., Ghosh, M., Yasodha, R., Varghese, M., Gurumurthi, K.: Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR). — Tree Physiol. 25: 1295–1302, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Barakat, M.N., Wahba, L.E., Milad, S.I.: Molecular mapping of QTLs for wheat flag leaf senescence under water-stress. — Biol. Plant. 57: 79–84, 2013.

    Article  CAS  Google Scholar 

  • Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. Buckler, E.S.: TASSEL: software for association mapping of complex traits in diverse samples. — Bioinformatics 23: 2633–2635, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Bush, D., McCarthy, K., Meder, R.: Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). — Ann. Forest Sci. 68: 1057–1066, 2011.

    Article  Google Scholar 

  • Bush, D., Thumma, B.: Characterising a Eucalyptus cladocalyx breeding population using SNP markers. — Tree Genet. Genomes 9: 741–752, 2013.

    Article  Google Scholar 

  • Callister, A., Bush, D.J., Collins, S., Davis, W.: Prospects for genetic improvement of Eucalyptus cladocalyx in Western Australia. — New Zeal. J. Forest. Sci. 38: 211–226, 2008.

    Google Scholar 

  • Cané-Retamales, C., Mora, F., Vargas-Reeve, F., Contreras-Soto, R.: Bayesian threshold analysis of breeding values, genetic correlation and heritability of flowering intensity in Eucalyptus cladocalyx under arid conditions. — Euphytica 178: 177–183, 2011.

    Article  Google Scholar 

  • Cappa, E.P., Pathauer, P.S., López, G.A.: Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina. — Tree Genet. Genomes 6: 981–994, 2010.

    Article  Google Scholar 

  • Cardon, L.R., Bell, J.I.: Association study designs for complex diseases. — Nature Rev. Genet. 2: 91–99, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Chezhian, P., Yasodha, R., Gosh, M.: Genetic diversity analysis in a seed orchard of Eucalyptus tereticornis. — New Forests 40: 85–99, 2010.

    Article  Google Scholar 

  • Doyle, J.J., Doyle, J.L.: Isolation of DNA from fresh plant tissue. — Focus 12: 13–15, 1987.

    Google Scholar 

  • Ellis M.F., Sedgley, M.: Floral morphology and breeding system of three species of Eucalyptus, section bisectaria (Myrtaceae). — Aust. J. Bot. 40: 249–262, 1992.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., Goudet, J.: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. — Mol. Ecol. 14: 2611–262, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L., Hofer, T., Foll, F.: Detecting loci under selection in a hierarchically structured population. — Heredity 103: 285–298, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L., Lischer, H.E.L.: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. — Mol. Ecol. Resources 10: 564–567, 2010.

    Article  Google Scholar 

  • Freeman, J.S., Whittock, S.P., Potts, B.M., Vaillancourt, R.E.: QTL influencing growth and wood properties in Eucalyptus globulus. — Tree Genet. Genomes 5: 713–722, 2009.

    Article  Google Scholar 

  • Gonzalez-Martinez, S.C., Huber, D., Ersoz, E., Davis, J.M., Neale, D.B.: Association genetics in Pinus taeda L. II. Carbon isotope discrimination. — Heredity 101: 19–26, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Kelleher, C.T., Wilkin, J., Zhuang, J., Cortés, A.J., Quintero, A.L.P., Gallagher, T.F., Bohlmann, J., Douglas, C.J., Ellis, B.E., Ritland, K.: SNP discovery, gene diversity, and linkage disequilibrium in wild populations of Populus tremuloides. — Tree Genet. Genomes 8: 821–829, 2012.

    Article  Google Scholar 

  • Lohwasser, U., Rehman Arif, M.A., Börner, A.: Discovery of loci determining pre-harvest sprouting and dormancy in wheat and barley applying segregation and association mapping. — Biol. Plant. 57: 663–674, 2013.

    Article  CAS  Google Scholar 

  • McDonald, M.W., Rawlins, M., Butchet, P.A., Bell, J.C.: Regional divergence and inbreeding in Eucalyptus cladocalyx (Myrtaceae). — Aust. J. Bot. 51: 393–403, 2003.

    Article  Google Scholar 

  • Missiaggia, A.A., Piacezzi, A., Grattapaglia, D.: Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. — Tree Genet. Genomes 1: 79–84, 2005.

    Article  Google Scholar 

  • Mora, F., Gleadow, R., Perret, S., Scapim, C.A.: Genetic variation for early flowering, survival and growth in sugar gum (Eucalyptus cladocalyx F. Muell) in southern Atacama Desert. — Euphytica 169: 335–344, 2009.

    Article  Google Scholar 

  • Mora, F., Serra, N.: Bayesian estimation of genetic parameters for growth, stem straightness, and survival in Eucalyptus globulus on an Andean Foothill site. — Tree Genet. Genomes 10: 711–719, 2014.

    Article  Google Scholar 

  • Okun, D.O., Kenya, E.U., Oballa, P.O., Odee, D.W., Muluvi, G.M.: Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers. — Afr. J. Biotechnol. 7: 2119–2123, 2008.

    CAS  Google Scholar 

  • Peakall, R., Smouse, P.: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. — Mol. Ecol. Notes 6: 288–295, 2006.

    Article  Google Scholar 

  • Pritchard, J.K., Stephens, M., Donnelly, P.: Inference of population structure using multilocus genotype data. — Genet. 155: 945–959, 2000.

    CAS  Google Scholar 

  • Rönnberg-Wästljung, A.C., Glynn, C., Weih, M.: QTL analyses of drought tolerance and growth for Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. — Theor. appl. Genet. 110: 537–549, 2005.

    Article  PubMed  Google Scholar 

  • Thamarus, K.A., Groom, K., Bradley, A., Raymond, C.A., Schimleck, L.R., Williams, E.R., Moran, G.F.: Identification of quantitative trait loci for wood and fibre properties in two full-sib pedigrees of Eucalyptus globulus. — Theor. appl. Genet. 109: 856–864, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Thumma, B.R., Baltunis, B.S., Bell, J.C., Emebiri, L.C., Moran, G.F., Southerton, S.G.: Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus nitens full-sib families. — Tree Genet. Genomes 6: 877–889, 2010.

    Article  Google Scholar 

  • Thumma, B.R., Nolan, M.F., Evans, R., Moran, G.: Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. — Genetics 171: 1257–1265, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tschaplinski, T.J., Tuskan, G.A., Sewell, M.M., Gebre, G.M., Todd, D.E., Pendley, C.D.: Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. — Tree physiol. 26: 595–604, 2006.

    Article  PubMed  Google Scholar 

  • Vargas-Reeve, F., Mora, F., Perret, S., Scapim, C.A.: Heritability of stem straightness and genetic correlations in Eucalyptus cladocalyx in the semi-arid region of Chile. — Crop Breed. appl. Biotechnol. 13: 107–112, 2013.

    Article  Google Scholar 

  • Yu, J.M., Pressoir. G., Briggs, W.H., Bi, I.V., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., Buckler, E.S.: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. — Nature Genet. 38: 203–208, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mora.

Additional information

Acknowledgements: This research was supported by the Chilean National Science and Technology Research Fund (FONDECYT), project No. 1130306. The authors thank Mr. Augusto Gomes for providing the samples and evaluating the progeny test.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesta, P., Mora, F., Ruiz, E. et al. Marker-trait associations for survival, growth, and flowering components in Eucalyptus cladocalyx under arid conditions. Biol Plant 59, 389–393 (2015). https://doi.org/10.1007/s10535-014-0459-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0459-9

Additional key words

Navigation