Skip to main content
Log in

Salt- and osmotic stress-induced choline monooxygenase expression in Kochia scoparia is ABA-independent

Biologia Plantarum

Abstract

Choline monooxygenase (CMO) is the first regulatory enzyme in the biosynthetic pathway for glycine betaine, an effective osmoprotectant in Kochia scoparia, a highly drought- and salt-tolerant species. In seedlings, CMO transcript levels are rapidly increased in response to both NaCl and osmotic stress treatments. The mRNA level in shoots was substantially higher than in roots. The rapid induction seen in whole plants was in contrast to the apparent down-regulation observed in suspension-cultured K. scoparia cells in response to the same salt stress. Treatment with exogenous abscisic acid (ABA) or fluridone shows that CMO induction proceeds via an ABA-independent signal transduction pathway. Examination of the CMO upstream regulatory region reveals a number of stress response-related elements, some of which may be involved in the stress tolerance shown by this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ABREs:

ABA-responsive elements

ARF:

auxin response factor

BADH:

betaine aldehyde dehydrogenase

CMO:

choline monooxydase

DRE:

dehydration-responsive element

GB:

glycine betaine

qRT-PCR:

reverse transcription quantitative PCR

References

  • Ahmad, M.A., Javed, F., Ashraf, M.: Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. — Plant Growth Regul. 53: 53–63, 2007.

    Article  Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress tolerance. — Environ. exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Balaji, B., Bucholtz, D.B., Anderson, J.M.: Barley yellow dwarf virus and cereal yellow dwarf virus quantification by realtime polymerase chain reaction in resistant and susceptible plants. — Phytopathology 93: 1386–1392, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, P.G., Watson, C.W.: Inhibition of carotenoid synthesis by fluridone and norflurazon. — Weed Sci. 26: 198–203, 1978.

    CAS  Google Scholar 

  • Becker, D.A.: Stem abscission in tumbleweeds of the ChenopodiaceaeKochia. — Amer. J. Bot. 65: 375–383, 1978.

    Article  Google Scholar 

  • Bhuiyan, N.H., Hamada, A., Yamada, N., Rai, V., Hibino, T., Takabe., T.: Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. — J. exp. Bot. 58: 4203–4212, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.H.H., Murata, N.: Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. — Plant Cell Environ. 34: 1–20, 2011.

    Article  PubMed  Google Scholar 

  • Doyle, J.J., Doyle, J.L.: Isolation of DNA from fresh plant tissue. — Focus 12: 13–15, 1990.

    Google Scholar 

  • Encina, A.E., Moral, R.M., Acebes, J.L., Álvarez, J.M.: Characterization of cell walls in bean (Phaseolus vulgaris L.) callus cultures tolerant to dichlorbenil. — Plant Sci. 160: 331–339, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Eulgem, T., Rushton, P.J., Robatzek, S., Somssich, I.E.: The WRKY superfamily of plant transcription factors. — Trends Plant Sci. 5: 199–206, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle, T.J., Hagen, G.: Auxin response factors. — Curr. Opin. Plant Biol. 10: 453–460, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant cisacting regulatory DNA elements (PLACE) database: 1999. Nucl. Acids Res. 27: 297–300, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hobo, T., Kowyama, Y., Hattori, T.: A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. — Proc. nat. Acad. Sci. USA 96: 15348–15353, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kern, A.J., Chaverra, M.E., Cranston, H.J., Dyer, W.E.: Dicamba responsive genes in herbicide-resistant and susceptible biotypes of Kochia scoparia. — Weed Sci. 53: 139–145, 2005.

    Article  CAS  Google Scholar 

  • Kern, A.J., Dyer, W.E.: Glycine betaine biosynthesis is induced by salt stress but repressed by auxinic herbicides in Kochia scoparia. — J. Plant Growth Regul. 23: 9–19, 2003.

    Google Scholar 

  • Khan, M.S., Yu, X., Kikuchi, A., Asahina, M., Watanabe, K.N.: Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. — Plant Biotechnol. 26: 125–134, 2009.

    Article  CAS  Google Scholar 

  • Kikuchi, A., Sanuki, N., Higashi, K., Koshiba, T., Kamada, H.: Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. — Planta. 223: 637–645, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Koheil, M.A.H., Hilal, S.H., El-Alfy, T.S., Leistner, E.: Quaternary ammonium compounds in intact plants and cell suspension cultures of Atriplex semibaccata and A. halimus during osmotic stress. — Phytochemistry 31: 2003–2008, 1992.

    Article  CAS  Google Scholar 

  • Lee, D.J., Park, J.W., Lee, H.W., Kim, J.: Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. — J. exp. Bot. 60: 3935–3957, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Yin, H., Li, D., Zhu, H., Zhang, Y., Zhu, W.: Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K. — J. Genet. Genomics 34: 355–361, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S., Gong, Q., Bohnert, H.J.: Dissecting salt stress pathways. — J. exp. Bot. 57: 1097–1107, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Meng, Y.L., Wang, Y.M., Zhang, D.B., Nii, N.: Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expression under stress conditions. — Cell Res. 11: 187–193, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–476, 1962.

    Article  CAS  Google Scholar 

  • Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K.: Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. — Plant Physiol. 149: 88–95, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.C., Kim, M.L., Kang, Y.H.: Pathogen- and NaClinduced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. — Plant Physiol. 135: 2150–2161, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Parmentier-Line, C.M., Panta, G.R., Rowland, L.J.: Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. — Plant Sci. 162: 273–282, 2002.

    Article  CAS  Google Scholar 

  • Rathinasabapathi, B., Burnet, M., Russell, B.L., Gage, D.A., Liao, P-C., Nye, G.J., Scott, P., Golbeck, J.H., Hanson, A.D.: Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. — Proc. nat. Acad. Sci. USA 94: 454–3458, 1997.

    Article  Google Scholar 

  • Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357–384, 1993.

    Article  CAS  Google Scholar 

  • Rozen, S., Skaletsky, H.: Primer3 on the www for general users and for biologist programmers. — Methods mol. Biol. 132: 365–378, 2000.

    PubMed  CAS  Google Scholar 

  • Russell, B.L., Rathinasabapathi, B., Hanson, A.: Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. — Plant Physiol. 116: 859–865, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual. — Cold Spring Harbor Laboratory Press, Cold Spring Harbor — New York 1989.

    Google Scholar 

  • Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. — Plant Physiol. 130: 709–719, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shahmuradov, I.A., Gammerman, A.J., Hancock, J.M., Bramley, P.M., Solovyev, V.V.: PlantProm: a database of plant promoter sequences. — Nucl. Acids Res. 31: 114–117, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y.G., Du, B.X., Zhang, W.K., Zhang, J.S., Chen, S-Y.: AhCMO, regulated by stress in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. — Theor. appl. Genet. 105: 815–821, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. — J. exp. Bot. 58: 221–227, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi, T., Kawaguchi, Y., Azuma, T., Nanmori, T., Yasuda, T.: Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L. — Plant Cell Physiol. 46: 505–513, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L-W., Showalter, A.M.: Cloning and salt-induced, ABAindependent expression of choline monooxygenase in Atriplex prostrata. — Physiol. Plant. 120: 405–412, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Xu, N., Hagen, G., Guilfoyle, T.: Multiple auxin response modules in the soybean SAUR 15A promoter. — Plant Sci. 126: 193–201, 1997.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.

    PubMed  CAS  Google Scholar 

  • Zhang, W., Gusta, L.V.: Germination response of black and yellow seed coated canola (Brassica napus) lines to chemical treatments under cold temperature conditions. — Plant Growth Regul. 60: 105–114, 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Dyer.

Additional information

Acknowledgements: We thank Dr. Yerlan Turuspekov (Institute of Plant Biotechnology, Almati, Kazakhstan) for providing 18S rRNA primers, Dr. David Parrot (Department of Plant Science and Plant Pathology, Montana State University) for technical suggestions, and Ms. Kate McInnerney (Department of Microbiology, Core Facility, Montana State University) for qRT-PCR assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinina, E.B., Keith, B.K., Kern, A.J. et al. Salt- and osmotic stress-induced choline monooxygenase expression in Kochia scoparia is ABA-independent. Biol Plant 56, 699–704 (2012). https://doi.org/10.1007/s10535-012-0132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0132-0

Additional key words

Navigation