Skip to main content
Log in

Effects of NaCl on the response of Mesembryanthemum crystallinum callus to Botrytis cinerea infection

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Callus of the halophyte Mesembryanthemum crystallinum was used to study the effect of NaCl on the response to Botrytis cinerea infection. The fungus easily colonized the callus surface and the intercellular spaces. However, in the NaCl-adapted tissues the incidence of penetration was 67 % lower than in the inoculated control tissue. The modification of the infection pattern found in the salt-adapted callus could be related to metabolic adaptations to salinity. This was manifested by the enhanced antioxidant potential of ascorbate, the up-regulated activities of ascorbate peroxidase, as well as guaiacol and syringaldazine peroxidases together with the increased detoxification capacity of glutathione transferase in the NaCl-adapted callus. The post-inoculation changes in NaCl-adapted and non-adapted calli were roughly similar and supported the prooxidative nature of B. cinerea infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

reduced ascorbate

APX:

ascorbate peroxidase

CAM:

crassulacean acid metabolism

DHA:

dehydroascorbate

dpi:

days post inoculation

EC:

electrical conductivity

GSH:

reduced glutathione

GSH-Px:

glutathione peroxidase

GSSG:

oxidized glutathione

GST:

glutathione-S-transferase

O2 :

superoxide radical

PODg:

peroxidase assayed with guajacol

PODs:

peroxidase assayed with syringaldazine

ROS:

reactive oxygen species

WC:

water content

TBARS:

thiobarbituric acid reactive substances

References

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi, K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. — Biol. Plant. 53: 243–248, 2009.

    Article  CAS  Google Scholar 

  • Baker, S.J., Newton, A.C., Gurr, S.J.: Cellular characteristics of temporary partial breakdown of mlo-resistance in barley to powdery mildew. — Physiol. mol. Plant Pathol. 56: 1–11, 2000.

    Article  CAS  Google Scholar 

  • Barna, B., Fodor, J., Pogány, M., Király, Z.: Role of reactive oxygen species and antioxidants in plant disease resistance. — Pest Manage. Sci. 59: 459–464, 2003.

    Article  CAS  Google Scholar 

  • Bartels, D., Sunkar, R.: Drought and salt tolerance in plants. — Crit. Rev. Plant Sci. 24: 23–58, 2005.

    Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bohnert, H., Cushman, J.C.: The ice plant cometh: lessons in abiotic stress tolerance. — J. Plant Growth Regul. 19: 334–346, 2000.

    Article  CAS  Google Scholar 

  • Botella, M.A., Quesada, M.A., Medina, M.I., Pliego, F., Valpuesta, V.: Induction of tomato peroxidase gene in vascular tissue. — FEBS Lett. 347: 195–198, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Jagendorf, A., Zhu, J.K.: Understanding and improving salt tolerance in plants. — Crop Sci. 45: 437–448, 2005.

    Article  CAS  Google Scholar 

  • Cushman, J.C., Bohnert, H.J.: Molecular genetics of crassulacean acid metabolism. — Plant Physiol. 113: 667–676, 1997.

    PubMed  CAS  Google Scholar 

  • Elad, Y., Evensen, K.: Physiological aspects of resistance to Botrytis cinerea. — Phytopathology 85: 637–643, 1995.

    Google Scholar 

  • Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. — Plant Cell 17: 1866–1875, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Gabara, B., Skłodowska, M., Wyrwicka, A., Glińska, S., Gapińska, M.: Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain. — Plant Sci. 164: 507–516, 2003.

    Article  CAS  Google Scholar 

  • Govrin, E.M., Levine, A.: The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. — Curr. Biol. 10: 751–757, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., Matsui, H.: A large family of class III plant peroxidases. — Plant Cell Physiol. 42: 462–468, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kuźniak, E., Skłodowska, M.: Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. — Plant Sci. 169: 723–731, 2001.

    Article  Google Scholar 

  • Kuźniak, E., Skłodowska, M.: Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. — J. exp. Bot. 56: 921–933, 2005.

    Article  PubMed  Google Scholar 

  • Liu, Y.-H., Huang, C.-J., Chen, C.-Y.: Identification and transcriptional analysis of genes involved in Bacillus cereus-induced systemic resistance in Lilium. — Biol. Plant. 54: 697–702, 2010.

    Article  CAS  Google Scholar 

  • Maehly, A.C., Chance, B.: Methods of Biochemical Analysis, Vol.1. Pp. 357–424. InterScience Publishers, New York 1954.

    Book  Google Scholar 

  • Miszalski, Z., Niewiadomska, E., Šlesak, I., Lüttge, U., Kluge, M., Ratajczak, R.: The effect of irradiation on carboxylating/decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L. exposed to salinity stress. — Plant Biol. 3: 17–23, 2001.

    Article  CAS  Google Scholar 

  • Muckenschnabel, I., Goodman, B.A., Williamson, B., Lyon, G.D., Deighton, N.: Infection of leaves of Arabidopsis thaliana by Botrytis cinerea; changes in ascorbic acid, free radicals and lipid peroxidation products. — J. exp. Bot. 53: 207–214, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Niewiadomska, E., Borland, A.M.: Crassulacean acid metabolism: a cause or consequence of oxidative stress in planta? — Progr. Bot. 69: 247–266, 2008.

    Article  CAS  Google Scholar 

  • Pang, A., Catesson, A.M., Francesch, C., Rolando, C., Goldberg, R.: On substrate specificity of peroxidases involved in the lignification process. — J. Plant Physiol. 135: 325–329, 1989.

    CAS  Google Scholar 

  • Quiroga, M., Guerrero, C., Botella, M.A., Barceló, A., Amaya, I., Medina, M.I., Alonso, F.J., Milrad de Forchetti, S., Tigier, H., Valpuesta, V.: A tomato peroxidase involved in the synthesis of lignin and suberin. — Plant Physiol. 122: 1119–1127, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, J.M., Pereira, C.S., Soares, N.C., Vieira, A.M., Feijó, J.A., Jackson, P.A.: The contribution of extensin network formation to rapid, hydrogen peroxide-mediated increases in grapevine callus wall resistance to fungal lytic enzymes. — J. exp. Bot. 57: 2025–2035, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Şlesak, I., Libik, M., Miszalski, Z.: Superoxide dismutase activity in callus from the C3-CAM intermediate plant Mesembryanthemum crystallinum. — Plant Cell Tissue Organ Cult. 75: 49–55, 2003.

    Article  Google Scholar 

  • Von Tiedemann, A.: Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. — Physiol. mol. Plant Pathol. 50: 151–166, 1997.

    Article  CAS  Google Scholar 

  • Vranova, E., Inzé, D., Van Breusegem, F.: Signal transduction during oxidative stress. — J. exp. Bot. 53: 1227–1236, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wiese, J., Kranz, T., Schubert, S.: Induction of pathogen resistance in barley by abiotic stress. — Plant Biol. 6: 529–536, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, B., Tudzynski, B., Tudzynski, P., Van Kan, J.A.L.: Botrytis cinerea: the cause of grey mould disease. — Mol. Plant Pathol. 8: 561–580, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek, P.: Oxidative burst: an early plant response to pathogen infection. — Biochem. J. 332: 681–692, 1997.

    Google Scholar 

  • Yagi, K.: Assay for serum lipid peroxide level its clinical significance. — In: Yagi, K. (ed.): Lipid Peroxides in Biology and Medicine. Pp. 223–241. Academic Press, London — New York 1982.

    Google Scholar 

  • Yen, H.E., Grimes, H.D., Edwards, G.E.: The effects of high salinity, water-deficit, and abscisic acid on phosphoenolopyruvate carboxylase activity and proline accumulation in Mesembryanthemum crystallinum cell cultures. — J. Plant Physiol. 154: 557–564, 1995.

    Google Scholar 

  • Zhu, J.K.: Plant salt tolerance. — Trends Plant Sci. 6: 66–71, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Polish research project: PB 2685/P01/2006/31 and University of Łódź grants No 506/040818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kuźniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuźniak, E., Gabara, B., Skłodowska, M. et al. Effects of NaCl on the response of Mesembryanthemum crystallinum callus to Botrytis cinerea infection. Biol Plant 55, 423–430 (2011). https://doi.org/10.1007/s10535-011-0106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0106-7

Additional key words

Navigation