Skip to main content

Advertisement

Log in

Mercury and metabolic syndrome: a review of experimental and clinical observations

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

A significant interrelation between heavy metal exposure and metabolic syndrome (MetS) development has been demonstrated earlier. Despite the presence of a number of works aimed at the investigation of the role of Hg in MetS development, the existing data remain contradictory. Therefore, the primary objective of the current work is to review the existing data regarding the influence of mercury on universal mechanisms involved in the pathogenesis of the development of MetS and its components. The brief chemical characterization of mercury is provided. The role of mercury in induction of oxidative stress has been discussed. In particular, Hg-induced oxidative stress may occur due to both prooxidant action of the metal and decrease in antioxidant enzymes. Despite the absence of direct indications, it can be proposed that mercury may induce endoplasmic reticulum stress. As it is seen from both in vivo and in vitro studies, mercury is capable of inducing inflammation. The reviewed data demonstrate that mercury affects universal pathogenetic mechanisms of MetS development. Moreover, multiple investigations have indicated the role of mercury in pathogenesis of MetS components: dyslipidemia, hypertension, insulin resistance, and obesity to a lesser extent. The present state of data regarding the interrelation between mercury and MetS denotes the following perspectives: (1) Further clinic-epidemiologic and experimental studies are required to estimate the association between mercury exposure and the development of MetS components, especially obesity; (2) Additional investigations of the possible effect of organism’s mercury content modulation on MetS pathogenesis should be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Hamid HA, Fahmy FC, Sharaf IA (2001) Influence of free radicals on cardiovascular risk due to occupational exposure to mercury. J Egypt Public Health Assoc 76(1–2):53–69

    CAS  PubMed  Google Scholar 

  • Aguado A, Galán M, Zhenyukh O, Wiggers GA, Roque FR, Redondo S, Peçanha F, Martín A, Fortuño A, Cachofeiro V, Tejerina T, Salaices M, Briones AM (2013) Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicol Appl Pharmacol 268(2):188–200

    CAS  PubMed  Google Scholar 

  • Al-azzawie HF, Umran A, Hyader NH (2013) Oxidative stress, antioxidant status and DNA damage in a mercury exposure workers. Br J of Pharmacol Toxicol 4(3):80–88

    CAS  Google Scholar 

  • Aliaga ME, López-Alarcón C, Barriga G, Olea-Azar C, Speisky H (2010) Redox-active complexes formed during the interaction between glutathione and mercury and/or copper ions. J Inorg Biochem 104(10):1084–1090

    CAS  PubMed  Google Scholar 

  • Al-Saleh I, Abduljabbar M, Al-Rouqi R, Elkhatib R, Alshabbaheen A, Shinwari N (2013) Mercury (Hg) exposure in breast-fed infants and their mothers and the evidence of oxidative stress. Biol Trace Elem Res 153(1–3):145–154

    CAS  PubMed  Google Scholar 

  • Ariza ME, Bijur GN, Williams MV (1998) Lead and mercury mutagenesis: role of H2O2, superoxide dismutase, and xanthine oxidase. Environ Mol Mutagen 31(4):352–361

    CAS  PubMed  Google Scholar 

  • Ayensu WK, Tchounwou PB (2006) Microarray analysis of mercury-induced changes in gene expression in human liver carcinoma (HepG2) cells: importance in immune responses. Int J Environ Res Public Health 3(2):141–173

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ayotte P, Carrier A, Ouellet N, Boiteau V, Abdous B, Sidi EA, Château-Degat ML, Dewailly É (2011) Relation between methylmercury exposure and plasma paraoxonase activity in inuit adults from Nunavik. Environ Health Perspect 119(8):1077–1083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bagger S, Breddam K, Byberg BR (1991) Binding of mercury(II) to protein thiol groups: a study of proteinase K and carboxypeptidase Y. J Inorg Biochem 42(2):97–103

    CAS  PubMed  Google Scholar 

  • Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    CAS  PubMed  Google Scholar 

  • Bando I, Reus MI, Andrés D, Cascales M (2005) Endogenous antioxidant defence system in rat liver following mercury chloride oral intoxication. J Biochem Mol Toxicol 19(3):154–161

    CAS  PubMed  Google Scholar 

  • Bánhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee AS, Li J, Mao C, Margittai E, Ni M, Paschen W, Piccirella S, Senesi S, Sitia R, Wang M, Yang W (2007) Endoplasmic reticulum stress. Ann N Y Acad Sci 1113:58–71

    PubMed  Google Scholar 

  • Barcelos GR, Grotto D, Serpeloni JM, Angeli JP, Rocha BA, de Oliveira Souza VC, Vicentini JT, Emanuelli T, Bastos JK, Antunes LM, Knasmüller S, Barbosa F Jr (2011) Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats. Arch Toxicol 85(9):1151–1157

    CAS  PubMed  Google Scholar 

  • Barnes DM, Kircher EA (2005) Effects of mercuric chloride on glucose transport in 3T3-L1 adipocytes. Toxicol In Vitro 19(2):207–214

    CAS  PubMed  Google Scholar 

  • Barnes DM, Hanlon PR, Kircher EA (2003) Effects of inorganic HgCl2 on adipogenesis. Toxicol Sci 75(2):368–377

    CAS  PubMed  Google Scholar 

  • Bashandy SA, Alhazza IM, El-Desoky GE, Al-Othman ZA (2011) Hepatoprotective and hypolipidemic effects of spirulina platensis in rats administered mercuric chloride. Afr J Pharm Pharmacol 5(2):175–182

    Google Scholar 

  • Basseri S, Austin RC (2012) Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int 2012:841362. doi:10.1155/2012/841362

    PubMed Central  PubMed  Google Scholar 

  • Bautista LE, Stein JH, Morgan BJ, Stanton N, Young T, Nieto FJ (2009) Association of blood and hair mercury with blood pressure and vascular reactivity. WMJ 108(5):250–252

    PubMed  Google Scholar 

  • Beltrán-Sánchez H, Harhay MO, Harhay MM, McElligott S (2013) Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. J Am Coll Cardiol 62(8):697–703

    PubMed Central  PubMed  Google Scholar 

  • Bender M, Lymberidi-Settimo E, Groth E (2013) New mercury treaty exposes health risks. J Public Health Policy 35(1):1–13

    PubMed  Google Scholar 

  • Benov LC, Benchev IC, Monovich OH (1990) Thiol antidotes effect on lipid peroxidation in mercury-poisoned rats. Chem Biol Interact 76(3):321–332

    CAS  PubMed  Google Scholar 

  • Black RS, Whanger PD, Tripp MJ (1979) Influence of silver, mercury, lead, cadmium, and selenium on glutathione peroxidase and transferase activities in rats. Biol Trace Elem Res 1(4):313–324

    CAS  PubMed  Google Scholar 

  • Bloom GD, Hellman B, Idahl LA, Lernmark A, Sehlin J, Täljedal IB (1972) Effects of organic mercurials on mammalian pancreatic -cells. Insulin release, glucose transport, glucose oxidation, membrane permeability and ultrastructure. Biochem J 129(2):241–254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bracci M, Tomasetti M, Malavolta M, Bonacucina V, Mocchegiani E, Santarelli L (2008) L-arginine reduces mercury accumulation in thymus of mercury-exposed mice: role of nitric oxide synthase activity and metallothioneins. Ind Health 46(6):567–574

    CAS  PubMed  Google Scholar 

  • Bramanti E, D’Ulivo A, Lampugnani L, Zamboni R, Raspi G (1999) Application of mercury cold vapor atomic fluorescence spectrometry to the characterization of mercury-accessible-SH groups in native proteins. Anal Biochem 274(2):163–173

    CAS  PubMed  Google Scholar 

  • Branco V, Canário J, Lu J, Holmgren A, Carvalho C (2011) Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase. Free Radic Biol Med 52(4):781–793

    PubMed  Google Scholar 

  • Brenden N, Rabbani H, Abedi-Valugerdi M (2001) Analysis of mercury-induced immune activation in nonobese diabetic (NOD) mice. Clin Exp Immunol 125(2):202–210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron AJ, Shaw JE, Zimmet PZ (2004) The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 33(2):351–375

    PubMed  Google Scholar 

  • Carranza-Rosales P, Said-Fernández S, Sepúlveda-Saavedra J, Cruz-Vega DE, Gandolfi AJ (2005) Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage. Toxicology 210(2–3):111–121

    CAS  PubMed  Google Scholar 

  • Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J Biol Chem 283(18):11913–11923

    CAS  PubMed  Google Scholar 

  • Carvalho CM, Lu J, Zhang X, Arnér ES, Holmgren A (2010) Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. FASEB J 25(1):370–381

    PubMed  Google Scholar 

  • Cave M, Appana S, Patel M, Falkner KC, McClain CJ, Brock G (2010) Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003–2004. Environ Health Perspect 118(12):1735–1742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24(5):816–823

    CAS  PubMed  Google Scholar 

  • Chang JY, Tsai PF (2008) Prevention of methylmercury-induced mitochondrial depolarization, glutathione depletion and cell death by 15-deoxy-delta-12,14-prostaglandin J(2). Neurotoxicology 29(6):1054–1061

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang JW, Chen HL, Su HJ, Liao PC, Guo HR, Lee CC (2011) Simultaneous exposure of non-diabetics to high levels of dioxins and mercury increases their risk of insulin resistance. J Hazard Mater 185(2–3):749–755

    CAS  PubMed  Google Scholar 

  • Chen C, Qu L, Li B, Xing L, Jia G, Wang T, Gao Y, Zhang P, Li M, Chen W, Chai Z (2005) Increased oxidative DNA damage, as assessed by urinary 8-hydroxy-2′-deoxyguanosine concentrations, and serum redox status in persons exposed to mercury. Clin Chem 51(4):759–767

    CAS  PubMed  Google Scholar 

  • Chen C, Qu L, Zhao J, Liu S, Deng G, Li B, Zhang P, Chai Z (2006a) Accumulation of mercury, selenium and their binding proteins in porcine kidney and liver from mercury-exposed areas with the investigation of their redox responses. Sci Total Environ 366(2–3):627–637

    CAS  PubMed  Google Scholar 

  • Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z (2006b) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114(2):297–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, Lin-Shiau SY, Liu SH (2006c) Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol 19(8):1080–1085

    CAS  PubMed  Google Scholar 

  • Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, Lin-Shiau SY, Liu SH (2006d) The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic beta-cell dysfunction in vitro and in vivo. Diabetes 55(6):1614–1624

    CAS  PubMed  Google Scholar 

  • Chen YW, Huang CF, Yang CY, Yen CC, Tsai KS, Liu SH (2010) Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways. Toxicol Appl Pharmacol 243(3):323–331

    CAS  PubMed  Google Scholar 

  • Cho S, Jacobs DR Jr, Park K (2014) Population correlates of circulating mercury levels in Korean adults: the Korea National Health and Nutrition Examination Survey IV. BMC Public Health 14:527

    PubMed Central  PubMed  Google Scholar 

  • Choi B, Yeum KJ, Park SJ, Kim KN, Joo NS (2013) Elevated serum ferritin and mercury concentrations are associated with hypertension; analysis of the fourth and fifth Korea national health and nutrition examination survey (KNHANES IV-2, 3, 2008-2009 and V-1, 2010). Environ Toxicol. doi:10.1002/tox.21899

    Google Scholar 

  • Cnop M, Foufelle F, Velloso LA (2012) Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 18(1):59–68

    CAS  PubMed  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced Inorganic Chemistry, 6th edn. Wiley-Interscience, Newyork, p 1376

    Google Scholar 

  • Cuello S, Gobbya L, Madrid Y, Campuzano S, Pedrero M, Bravo L, Cámara C, Ramos S (2010) Molecular mechanisms of methylmercury-induced cell death in human HepG2 cells. Food Chem Toxicol 48(5):1405–1411

    CAS  PubMed  Google Scholar 

  • Da Cunha V, Souza HP, Rossoni LV, França AS, Vassallo DV (2000) Effects of mercury on the isolated perfused rat tail vascular bed are endothelium-dependent. Arch Environ Contam Toxicol 39(1):124–130

    PubMed  Google Scholar 

  • Dastych J, Walczak-Drzewiecka A, Wyczolkowska J, Metcalfe DD (1999) Murine mast cells exposed to mercuric chloride release granule-associated N-acetyl-beta-D-hexosaminidase and secrete IL-4 and TNF-alpha. J Allergy Clin Immunol 103(6):1108–1114

    CAS  PubMed  Google Scholar 

  • De Freitas AS, Funck VR, Rotta Mdos S, Bohrer D, Mörschbächer V, Puntel RL, Nogueira CW, Farina M, Aschner M, Rocha JB (2009) Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res Bull 79(1):77–84

    PubMed  Google Scholar 

  • De Vos G, Jerschow E, Liao Z, Rosenstreich D (2004) Effects of fluoride and mercury on human cytokine response in vitro. J Allergy Clin Immunol 113(2):S66

    Google Scholar 

  • De Vos G, Abotaga S, Liao Z, Jerschow E, Rosenstreich D (2007) Selective effect of mercury on Th2-type cytokine production in humans. Immunopharmacol Immunotoxicol 29(3–4):537–548

    PubMed  Google Scholar 

  • Drescher O, Dewailly E, Diorio C, Ouellet N, Sidi EA, Abdous B, Valera B, Ayotte P (2014) Methylmercury exposure, PON1 gene variants and serum paraoxonase activity in Eastern James Bay Cree adults. J Expo Sci Environ Epidemiol. doi:10.1038/jes.2013.96

    PubMed  Google Scholar 

  • Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468):1415–1428

    CAS  PubMed  Google Scholar 

  • Eliav E, Kaldor U, Ishikawa Y (1995) Transition energies of mercury and ekamercury (element 112) by the relativistic coupled-cluster method. Phys Rev A 52(4):2765–2769

    CAS  PubMed  Google Scholar 

  • Eom SY, Choi SH, Ahn SJ, Kim DK, Kim DW, Lim JA, Choi BS, Shin HJ, Yun SW, Yoon HJ, Kim YM, Hong YS, Yun YW, Sohn SJ, Kim H, Park KS, Pyo HS, Kim H, Oh SY, Kim J, Lee SA, Ha M, Kwon HJ, Park JD (2014) Reference levels of blood mercury and association with metabolic syndrome in Korean adults. Int Arch Occup Environ Health 87(5):501–513

    CAS  PubMed  Google Scholar 

  • Ezaki O (1989) IIb group metal ions (Zn2 + , Cd2 + , Hg2 +) stimulate glucose transport activity by post-insulin receptor kinase mechanism in rat adipocytes. J Biol Chem 264(27):16118–16122

    CAS  PubMed  Google Scholar 

  • Farina M, Soares FA, Zeni G, Souza DO, Rocha JB (2004) Additive pro-oxidative effects of methylmercury and ebselen in liver from suckling rat pups. Toxicol Lett 146(3):227–235

    CAS  PubMed  Google Scholar 

  • Farina M, Campos F, Vendrell I, Berenguer J, Barzi M, Pons S, Suñol C (2009) Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 112(2):416–426

    CAS  PubMed  Google Scholar 

  • Faustman EM, Ponce RA, Ou YC, Mendoza MA, Lewandowski T, Kavanagh T (2002) Investigations of methylmercury-induced alterations in neurogenesis. Environ Health Perspect 110(5):859–864

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12(5):3117–3132

    PubMed Central  PubMed  Google Scholar 

  • Fillion M, Mergler D, Sousa Passos CJ, Larribe F, Lemire M, Guimarães JR (2006) A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon. Environ Health 5:29

    PubMed Central  PubMed  Google Scholar 

  • Flores CR, Puga MP, Wrobel K, Garay Sevilla ME, Wrobel K (2011) Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res Clin Pract 91(3):333–341

    CAS  PubMed  Google Scholar 

  • Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy AC, Marques MR, Dafre AL, Farina M (2009) Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 47(4):449–457

    CAS  PubMed  Google Scholar 

  • Friend A, Craig L, Turner S (2013) The prevalence of metabolic syndrome in children: a systematic review of the literature. Metab Syndr Relat Disord 11(2):71–80

    PubMed  Google Scholar 

  • Furieri LB, Galán M, Avendaño MS, García-Redondo AB, Aguado A, Martínez S, Cachofeiro V, Bartolomé MV, Alonso MJ, Vassallo DV, Salaices M (2011) Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species. Br J Pharmacol 162(8):1819–1831

    PubMed Central  CAS  PubMed  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Futatsuka M, Kitano T, Wakamiya J (1996) An epidemiological study on diabetes mellitus in the population living in a methyl mercury polluted area. J Epidemiol 6(4):204–208

    CAS  PubMed  Google Scholar 

  • García-Sevillano MA, García-Barrera T, Navarro F, Gómez-Ariza JL (2014) Absolute quantification of superoxide dismutase in cytosol and mitochondria of mice hepatic cells exposed to mercury by a novel metallomic approach. Anal Chim Acta. doi:10.1016/j.aca.2014.07.014

    PubMed  Google Scholar 

  • Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, Crainiceanu CM, Silbergeld EK (2009) Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect 117(12):1932–1938

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner RM, Nyland JF, Silbergeld EK (2010a) Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicol Lett 198(2):182–190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK (2010b) Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ Res 110(4):345–354

    PubMed Central  CAS  PubMed  Google Scholar 

  • George JM (1971) Effect of mercury on response of isolated fat cells to insulin and lipolytic hormones. Endocrinology 89(6):1489–1498

    CAS  PubMed  Google Scholar 

  • Ghosh R, Jana AD, Pal S, Mostafa G, Fun HK, Ghosh BK (2007) Crystal engineering through [Hg (SCN)4]2−templates: SS interaction mediated 3-D parallel interpenetration in the self-assembled superstructure of [Hg (SCN)4]2−and protonated 2, 2′-dipyridylamine. CrystEngComm 9(5):353–357

    CAS  Google Scholar 

  • Gillespie RJ (1972) Molecular Geometry. Van Nostrand Reinhold, London

    Google Scholar 

  • Gillespie RJ, Granger P, Morgan KR, Schrobilgen GJ (1984) Mercury-199 NMR study of the mercury cations (Hg2+, Hg22+, Hg32+, and Hg42+): the first example of mercury-mercury spin-spin coupling. Inorg Chem 23(7):887–891

    CAS  Google Scholar 

  • Goering PL, Thomas D, Rojko JL, Lucas AD (1999) Mercuric chloride-induced apoptosis is dependent on protein synthesis. Toxicol Lett 105(3):183–195

    CAS  PubMed  Google Scholar 

  • Golpon HA, Püchner A, Barth P, Welte T, Wichert PV, Feddersen CO (2003) Nitric oxide-dependent vasorelaxation and endothelial cell damage caused by mercury chloride. Toxicology 192(2–3):179–188

    CAS  PubMed  Google Scholar 

  • Gradinaru R, Ionas A, Pui A, Zbancioc G, Drochioiu G (2011) Interaction of inorganic mercury with CoA-SH and acyl-CoAs. Biometals 24(6):1115–1121

    CAS  PubMed  Google Scholar 

  • Grdenic D (1965) The structural chemistry of mercury. Quarterly Reviews, Chemical Society 19(3):303–328

    CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the Elements. Elsevier, Amsterdam

    Google Scholar 

  • Grotto D, Valentini J, Fillion M, Passos CJ, Garcia SC, Mergler D, Barbosa FJr (2010) Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Sci Total Environ 408(4):806–811

    CAS  PubMed  Google Scholar 

  • Gump BB, MacKenzie JA, Dumas AK, Palmer CD, Parsons PJ, Segu ZM, Mechref YS, Bendinskas KG (2012) Fish consumption, low-level mercury, lipids, and inflammatory markers in children. Environ ResJa 112:204–211

    CAS  Google Scholar 

  • Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL (2007) Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int J Toxicol 26(1):57–69

    CAS  PubMed  Google Scholar 

  • Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40(1):138–145

    CAS  PubMed  Google Scholar 

  • He X, Liang M (2013) Shortening of mitochondria and dilation of endoplasmic reticulum in the medullary thick ascending limb of dahl salt-sensitive rats. Hypertension 62:A479

    Google Scholar 

  • He K, Xun P, Liu K, Morris S, Reis J, Guallar E (2013) Mercury exposure in young adulthood and incidence of diabetes later in life: the CARDIA Trace Element Study. Diabetes Care 36(6):1584–1589

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hemdan NY, Lehmann I, Wichmann G, Lehmann J, Emmrich F, Sack U (2007) Immunomodulation by mercuric chloride in vitro: application of different cell activation pathways. Clin Exp Immunol 148(2):325–337

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hijova E, Nistiar F, Sipulova A (2005) Changes in ascorbic acid and malondialdehyde in rats after exposure to mercury. Bratisl Lek Listy 106(8–9):248–251

    CAS  PubMed  Google Scholar 

  • Hirota Y, Yamaguchi S, Shimojoh N, Sano KI (1980) Inhibitory effect of methylmercury on the activity of glutathione peroxidase. Toxicol Appl Pharmacol 53(1):174–176

    CAS  PubMed  Google Scholar 

  • Hoffman M, Autor AP (1980) Production of superoxide anion by an NADPH-oxidase from rat pulmonary macrophages. FEBS Lett 121(2):352–354

    CAS  PubMed  Google Scholar 

  • Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396(1):120–124

    CAS  PubMed  Google Scholar 

  • Hong D, Cho SH, Park SJ, Kim SY, Park SB (2013) Hair mercury level in smokers and its influence on blood pressure and lipid metabolism. Environ Toxicol Pharmacol 36(1):103–107

    CAS  PubMed  Google Scholar 

  • Hu H, Abedi-Valugerdi M, Möller G (1997) Pretreatment of lymphocytes with mercury in vitro induces a response in T cells from genetically determined low-responders and a shift of the interleukin profile. Immunology 90(2):198–204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang YL, Cheng SL, Lin TH (1996) Lipid peroxidation in rats administrated with mercuric chloride. Biol Trace Elem Res 52(2):193–206

    CAS  PubMed  Google Scholar 

  • Ibrahim S (2011) Effect of methylmercury on insulin-stimulated glucose uptake in mouse skeletal muscle. Diabetologia 54:227

    Google Scholar 

  • Jaiswal N, Rizvi SI (2013) Onion extract (Allium cepa L.) up-regulates paraoxonase 1 activity with concomitant protection against LDL oxidation in male wistar strain rats subjected to mercuric chloride induced oxidative stress. Planta Med 79:PB21

    Google Scholar 

  • James SJ, Slikker W 3rd, Melnyk S, New E, Pogribna M, Jernigan S (2005) Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 26(1):1–8

    CAS  PubMed  Google Scholar 

  • Kang D, Lee K (2013) The relationships between blood Mercury concentration and body composition measures using 2010 Korean National Health and Nutrition Examination Survey. Korean J Obes 22(4):237–242

    Google Scholar 

  • Kassi E, Pervanidou P, Kaltsas G, Chrousos G (2011) Metabolic syndrome: definitions and controversies. BMC Med 9:48

    PubMed Central  PubMed  Google Scholar 

  • Kawakami T, Hanao N, Nishiyama K, Kadota Y, Inoue M, Sato M, Suzuki S (2012) Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol Appl Pharmacol 258(1):32–42

    CAS  PubMed  Google Scholar 

  • Keizo W, Yasuo N (1979) Toxic effects of several mercury compounds on SH and non-SH enzymes. Toxicol Lett 4(1):49–55

    Google Scholar 

  • Kempuraj D, Asadi S, Zhang B, Manola A, Hogan J, Peterson E, Theoharides TC (2010) Mercury induces inflammatory mediator release from human mast cells. J Neuroinflammation 7:20

    PubMed Central  PubMed  Google Scholar 

  • Kim SH, Sharma RP (2005) Mercury alters endotoxin-induced inflammatory cytokine expression in liver: differential roles of p38 and extracellular signal-regulated mitogen-activated protein kinases. Immunopharmacol Immunotoxicol 27(1):123–135

    CAS  PubMed  Google Scholar 

  • Kim SH, Johnson VJ, Sharma RP (2002) Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-kappaB and p38 MAPK signaling pathways. Nitric Oxide 7(1):67–74

    CAS  PubMed  Google Scholar 

  • Kim SH, Johnson VJ, Sharma RP (2003) Oral exposure to inorganic mercury alters T lymphocyte phenotypes and cytokine expression in BALB/c mice. Arch Toxicol 77(11):613–620

    CAS  PubMed  Google Scholar 

  • Kitamura M, Hiramatsu N (2010) The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 23(5):941–950

    CAS  PubMed  Google Scholar 

  • Kobal AB, Horvat M, Prezelj M, Briski AS, Krsnik M, Dizdarevic T, Mazej D, Falnoga I, Stibilj V, Arneric N, Kobal D, Osredkar J (2004) The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 17(4):261–274

    CAS  PubMed  Google Scholar 

  • Kobal AB, Prezelj M, Horvat M, Krsnik M, Gibicar D, Osredkar J (2008) Glutathione level after long-term occupational elemental mercury exposure. Environ Res 107(1):115–123

    CAS  PubMed  Google Scholar 

  • Kondo T, Osugi S, Shimokata K, Honjo H, Morita Y, Yamashita K, Maeda K, Muramatsu T, Shintani S, Matsushita K, Murohara T (2011) Metabolic syndrome and all-cause mortality, cardiac events, and cardiovascular events: a follow-up study in 25,471 young- and middle-aged Japanese men. Eur J Cardiovasc Prev Rehabil 18(4):574–580

    PubMed  Google Scholar 

  • Kumagai Y, Homma-Takeda S, Shinyashiki M, Shimojo N (1997a) Alterations in superoxide dismutase isozymes by methylmercury. Appl Organomet Chem 11(8):635–643

    CAS  Google Scholar 

  • Kumagai Y, Nagafune J, Mizukado S, Shinyashiki M, Shimojo N (1997b) 3C-03 alterations in gene expression, protein content and enzyme activity of mouse kidney Mn-SOD by inorganic mercury. J Toxicol Sci 22(4):372

    Google Scholar 

  • Kunkely H, Vogler A (1989) Photoluminescence of tetranuclear mercury (II) complexes. Chem Phys Lett 164(6):621–624

    CAS  Google Scholar 

  • Kuo CC, Moon K, Thayer KA, Navas-Acien A (2013) Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep 13(6):831–849

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288(21):2709–2716

    PubMed  Google Scholar 

  • Lamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson K, Ohnemus DC, Saito MA (2014) A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512(7512):65–68

    CAS  PubMed  Google Scholar 

  • Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35(4):373–381

    CAS  PubMed  Google Scholar 

  • Lee BK, Kim Y (2013) Blood cadmium, mercury, and lead and metabolic syndrome in South Korea: 2005–2010 Korean National Health and Nutrition Examination Survey. Am J Ind Med 56(6):682–692

    CAS  PubMed  Google Scholar 

  • Lee YW, Ha MS, Kim YK (2001) Role of reactive oxygen species and glutathione in inorganic mercury-induced injury in human glioma cells. Neurochem Res 26(11):1187–1193

    CAS  PubMed  Google Scholar 

  • Lim S, Choi MC, Joh KO, Paek D (2008) The health effects of mercury on the cardiac autonomic activity according to the heart rate variability. Korean J Occup Environ Med 20(4):302–313

    Google Scholar 

  • Lin TH, Huang YL, Huang SF (1996) Lipid peroxidation in liver of rats administrated with methyl mercuric chloride. Biol Trace Elem Res 54(1):33–41

    CAS  PubMed  Google Scholar 

  • Lind PM, Risérus U, Salihovic S, Bavel BV, Lind L (2013) An environmental wide association study (EWAS) approach to the metabolic syndrome. Environ Int 55:1–8

    PubMed  Google Scholar 

  • Lison D, Dubois P, Lauwerys R (1988) In vitro effect of mercury and vanadium on superoxide anion production and plasminogen activator activity of mouse peritoneal macrophages. Toxicol Lett 40(1):29–36

    CAS  PubMed  Google Scholar 

  • Liu SH, Lin-Shiau SY (2002) Mercuric chloride alters the membrane potential and intracellular calcium level in mouse pancreatic islet cells. J Toxicol Environ Health A 65(3–4):317–326

    CAS  PubMed  Google Scholar 

  • Liu J, Lei D, Waalkes MP, Beliles RP, Morgan DL (2003) Genomic analysis of the rat lung following elemental mercury vapor exposure. Toxicol Sci 74(1):174–181

    CAS  PubMed  Google Scholar 

  • Liu H, Qian J, Wang F, Sun X, Xu X, Xu W, Zhang X, Zhang X (2010) Expression of two endoplasmic reticulum stress markers, GRP78 and GADD153, in rat retinal detachment model and its implication. Eye (Lond) 24(1):137–144

    CAS  Google Scholar 

  • Lund BO, Miller DM, Woods JS (1991) Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42(S1):81–87

    Google Scholar 

  • Machado AC, Padilha AS, Wiggers GA, Siman FD, Stefanon I, Vassallo DV (2007) Small doses of mercury increase arterial pressure reactivity to phenylephrine in rats. Environ Toxicol Pharmacol 24(2):92–97

    CAS  PubMed  Google Scholar 

  • Mackness M, Mackness B (2004) Paraoxonase 1 and atherosclerosis: is the gene or the protein more important? Free Radic Biol Med 37(9):1317–1323

    CAS  PubMed  Google Scholar 

  • Mah V, Jalilehvand F (2010) Glutathione complex formation with mercury(II) in aqueous solution at physiological pH. Chem Res Toxicol 23(11):1815–1823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mahboob M, Shireen KF, Atkinson A, Khan AT (2001) Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury. J Environ Sci Health B 36(5):687–697

    CAS  PubMed  Google Scholar 

  • Malik S, Wong ND, Franklin SS, Kamath TV, L’Italien GJ, Pio JR, Williams GR (2004) Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110(10):1245–1250

    PubMed  Google Scholar 

  • Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7(5):e330–e341

    PubMed  Google Scholar 

  • Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K, Kaneko S (2008) Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57(8):1071–1077

    CAS  PubMed  Google Scholar 

  • Mazerik JN, Mikkilineni H, Kuppusamy VA, Steinhour E, Peltz A, Marsh CB, Kuppusamy P, Parinandi NL (2007) Mercury activates phospholipase a(2) and induces formation of arachidonic acid metabolites in vascular endothelial cells. Toxicol Mech Methods 17(9):541–557

    CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  PubMed  Google Scholar 

  • Meltzer HM, Mundal HH, Alexander J, Bibow K, Ydersbond TA (1994) Does dietary arsenic and mercury affect cutaneous bleeding time and blood lipids in humans? Biol Trace Elem Res 46(1–2):135–153

    CAS  PubMed  Google Scholar 

  • Merzoug S, Toumi ML, Oumeddour A, Boukhris N, Baudin B, Tahraoui A, Bairi A (2009) Effect of inorganic mercury on biochemical parameters in Wistar rat. Journal of cell and Animal Biology 3(12):222–230

    CAS  Google Scholar 

  • Milaeva E, Petrosyan V, Berberova N, Pimenov Y, Pellerito L (2004) Organic derivatives of mercury and tin as promoters of membrane lipid peroxidation. Bioinorg Chem Appl 2(1–2):69–91

    PubMed Central  CAS  Google Scholar 

  • Miller DM, Woods JS (1993) Redox activities of mercury-thiol complexes: implications for mercury-induced porphyria and toxicity. Chem Biol Interact 88(1):23–35

    CAS  PubMed  Google Scholar 

  • Moon SS (2013) Association of lead, mercury and cadmium with diabetes in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Diabet Med 30(4):e143–e148

    CAS  PubMed  Google Scholar 

  • Moon S (2014) Additive effect of heavy metals on metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Endocrine 46(2):263–271

    CAS  PubMed  Google Scholar 

  • Moreira EL, de Oliveira J, Dutra MF, Santos DB, Gonçalves CA, Goldfeder EM, de Bem AF, Prediger RD, Aschner M, Farina M (2012) Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease? Toxicol Sci 30(2):373–382

    Google Scholar 

  • Mozaffarian D, Shi P, Morris JS, Grandjean P, Siscovick DS, Spiegelman D, Willett WC, Rimm EB, Curhan GC, Forman JP (2012) Mercury exposure and risk of hypertension in US men and women in 2 prospective cohorts. Hypertension 60(3):645–652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mozumdar A, Liguori G (2011) Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999-2006. Diabetes Care 34(1):216–219

    PubMed Central  PubMed  Google Scholar 

  • Mykkanen HM, Ganther HE (1974) Effect of mercury on erythrocyte glutathione reductase activity. In vivo and in vitro studies. Bull Environ Contam Toxicol 12(1):10–16

    CAS  PubMed  Google Scholar 

  • Nakagawa R (1995) Concentration of mercury in hair of diseased people in Japan. Chemosphere 30(1):135–140

    CAS  PubMed  Google Scholar 

  • Nasu T, Nakai E, Gyobu K, Ishida Y (1984) Relaxant effects of mercury and mercury uptake in the smooth muscle of guinea-pig taenia coli. Gen Pharmacol 15(3):247–250

    CAS  PubMed  Google Scholar 

  • Ni M, Li X, Yin Z, Jiang H, Sidoryk-Wegrzynowicz M, Milatovic D, Cai J, Aschner M (2010) Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 116(2):590–603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nyland JF, Fillion M, Barbosa F Jr, Shirley DL, Chine C, Lemire M, Mergler D, Silbergeld EK (2011) Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ Health Perspect 119(12):1733–1738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oda E (2012) Metabolic syndrome: its history, mechanisms, and limitations. Acta Diabetol 49(2):89–95

    CAS  PubMed  Google Scholar 

  • Omanwar S, Saidullah B, Ravi K, Fahim M (2013) Modulation of vasodilator response via the nitric oxide pathway after acute methyl mercury chloride exposure in rats. Biomed Res Int 2013:530603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oram PD, Fang X, Fernando Q, Letkeman P, Letkeman D (1996) The formation of constants of mercury(II)–glutathione complexes. Chem Res Toxicol 9(4):709–712

    CAS  PubMed  Google Scholar 

  • Ou YC, Thompson SA, Kirchner SC, Kavanagh TJ, Faustman EM (1997) Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury. Toxicol Appl Pharmacol 147(1):31–38

    CAS  PubMed  Google Scholar 

  • Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461

    PubMed  Google Scholar 

  • Pal S, Blais JM, Robidoux MA, Haman F, Krümmel E, Seabert TA, Imbeault P (2013) The association of type 2 diabetes and insulin resistance/secretion with persistent organic pollutants in two First Nations communities in northern Ontario. Diabetes Metab 39(6):497–504

    CAS  PubMed  Google Scholar 

  • Parikh RM, Mohan V (2012) Changing definitions of metabolic syndrome. Indian J Endocrinol Metab 16(1):7–12

    PubMed Central  PubMed  Google Scholar 

  • Park S, Lee BK (2013) Body fat percentage and hemoglobin levels are related to blood lead, cadmium, and mercury concentrations in a Korean Adult Population (KNHANES 2008–2010). Biol Trace Elem Res 151(3):315–323

    CAS  PubMed  Google Scholar 

  • Park HJ, Youn HS (2013) Mercury induces the expression of cyclooxygenase-2 and inducible nitric oxide synthase. Toxicol Ind Health 29(2):169–174

    CAS  PubMed  Google Scholar 

  • Park SB, Choi SW, Nam AY (2009) Hair tissue mineral analysis and metabolic syndrome. Biol Trace Elem Res 130(3):218–228

    CAS  PubMed  Google Scholar 

  • Park SK, Lee S, Basu N, Franzblau A (2013) Associations of blood and urinary mercury with hypertension in U.S. adults: the NHANES 2003-2006. Environ Res 123:25–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    CAS  Google Scholar 

  • Pearson RG (1968) Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ 45(9):581

    CAS  Google Scholar 

  • Pecanha FM, Wiggers GA, Briones AM, Perez-Giron JV, Miguel M, Garcia-Redondo AB, Vassallo DV, Alonso MJ, Salaices M (2010) The role of cyclooxygenase (COX)-2 derived prostanoids on vasoconstrictor responses to phenylephrine is increased by exposure to low mercury concentration. J Physiol Pharmacol 61(1):29–36

    CAS  PubMed  Google Scholar 

  • Pedersen EB, Jørgensen ME, Pedersen MB, Siggaard C, Sørensen TB, Mulvad G, Hansen JC, Asmund G, Skjoldborg H (2005) Relationship between mercury in blood and 24-h ambulatory blood pressure in Greenlanders and Danes. Am J Hypertens 18(5 Pt 1):612–618

    CAS  PubMed  Google Scholar 

  • Peltz A, Sherwani SI, Kotha SR, Mazerik JN, O’Connor Butler ES, Kuppusamy ML, Hagele T, Magalang UJ, Kuppusamy P, Marsh CB, Parinandi NL (2009) Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. Int J Toxicol 28(3):190–206

    CAS  PubMed  Google Scholar 

  • Perrin-Nadif R, Dusch M, Koch C, Schmitt P, Mur JM (1996) Catalase and superoxide dismutase activities as biomarkers of oxidative stress in workers exposed to mercury vapors. J Toxicol Environ Health 48(2):107–119

    CAS  PubMed  Google Scholar 

  • Pillarisetti S, Saxena U (2004) Role of oxidative stress and inflammation in the origin of type 2 diabetes–a paradigm shift. Expert Opin Ther Targets 8(5):401–408

    CAS  PubMed  Google Scholar 

  • Pinheiro MC, Macchi BM, Vieira JL, Oikawa T, Amoras WW, Guimarães GA, Costa CA, Crespo-López ME, Herculano AM, Silveira LC, do Nascimento JL (2008) Mercury exposure and antioxidant defenses in women: a comparative study in the Amazon. Environ Res 107(1):53–59

    CAS  PubMed  Google Scholar 

  • Pollack AZ, Schisterman EF, Goldman LR, Mumford SL, Perkins NJ, Bloom MS, Rudra CB, Browne RW, Wactawski-Wende J (2012) Relation of blood cadmium, lead, and mercury levels to biomarkers of lipid peroxidation in premenopausal women. Am J Epidemiol 175(7):645–652

    PubMed Central  PubMed  Google Scholar 

  • Pollack AZ, Sjaarda L, Ahrens KA, Mumford SL, Browne RW, Wactawski-Wende J, Schisterman EF (2014) Association of cadmium, lead and mercury with paraoxonase 1 activity in women. PLoS ONE 9(3):e92152

    PubMed Central  PubMed  Google Scholar 

  • Pollard KM, Landberg GP (2001) The in vitro proliferation of murine lymphocytes to mercuric chloride is restricted to mature T cells and is interleukin 1 dependent. Int Immunopharmacol 1(3):581–593

    CAS  PubMed  Google Scholar 

  • Porras AG, Olson JS, Palmer G (1981) The reaction of reduced xanthine oxidase with oxygen. Kinetics of peroxide and superoxide formation. J Biol Chem 256(17):9006–9103

    CAS  PubMed  Google Scholar 

  • Qian Y, Tiffany-Castiglioni E (2003) Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochem Res 28(1):153–162

    CAS  PubMed  Google Scholar 

  • Qian Y, Falahatpisheh MH, Zheng Y, Ramos KS, Tiffany-Castiglioni E (2001) nduction of 78 kD glucose-regulated protein (GRP78) expression and redox-regulated transcription factor activity by lead and mercury in C6 rat glioma cells. Neurotox Res 3(6):581–589

    CAS  PubMed  Google Scholar 

  • Queiroz ML, Pena SC, Salles TS, de Capitani EM, Saad ST (1998) Abnormal antioxidant system in erythrocytes of mercury-exposed workers. Hum Exp Toxicol 17(4):225–230

    CAS  PubMed  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55(3):319–331

    CAS  PubMed  Google Scholar 

  • Reaven GM (1993) Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 44:121–131

    CAS  PubMed  Google Scholar 

  • Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607

    CAS  PubMed  Google Scholar 

  • Ribarov S, Benov L, Benchev I, Monovich O, Markova V (1982) Hemolysis and peroxidation in heavy metal-treated erythrocytes; GSH content and activities of some protecting enzymes. Experientia 38(11):1354–1355

    CAS  Google Scholar 

  • Ribarov SR, Benov LC, Marcova VI, Benchev IC (1983) Hemoglobin-catalyzed lipid peroxidation in the presence of mercuric chloride. Chem Biol Interact 45(1):105–112

    CAS  PubMed  Google Scholar 

  • Risher JF, Murray HE, Prince GR (2002) Organic mercury compounds: human exposure and its relevance to public health. Toxicol Ind Health 18(3):109–160

    CAS  PubMed  Google Scholar 

  • Rizzetti DA, Torres JG, Escobar AG, Peçanha FM, Santos FW, Puntel RL, Alonso MJ, Briones AM, Salaices M, Vassallo DV, Wiggers GA (2013) Apocynin prevents vascular effects caused by chronic exposure to low concentrations of mercury. PLoS One 8(2):e55806

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzo M, Kotur-Stevuljevic J, Berneis K, Spinas G, Rini GB, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V, Vekic J (2009) Atherogenic dyslipidemia and oxidative stress: a new look. Transl Res 153(5):217–223

    CAS  PubMed  Google Scholar 

  • Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84(21–22):705–712

    CAS  PubMed  Google Scholar 

  • Romeo GR, Lee J, Shoelson SE (2012) Metabolic syndrome, insulin resistance, and roles of inflammation–mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol 32(8):1771–1776

    CAS  PubMed  Google Scholar 

  • Rossoni LV, Amaral SM, Vassallo PF, França A, Oliveira EM, Varner KJ, Mill JG, Vassallo DV (1999) Effects of mercury on the arterial blood pressure of anesthetized rats. Braz J Med Biol Res 32(8):989–997

    CAS  PubMed  Google Scholar 

  • Rumbeiha WK, Fitzgerald SD, Vrable RA (1998) P3B72-Pro-inflammatory cytokine patiern in urine and serum of mice given a subnephrotoxic dose of mercuric chloride. Toxicol Lett 95:169–170

    Google Scholar 

  • Sage AT, Holtby-Ottenhof S, Shi Y, Damjanovic S, Sharma AM, Werstuck GH (2012) Metabolic syndrome and acute hyperglycemia are associated with endoplasmic reticulum stress in human mononuclear cells. Obesity (Silver Spring) 20(4):748–755

    CAS  Google Scholar 

  • Salonen JT, Seppänen K, Lakka TA, Salonen R, Kaplan GA (2000) Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis 148(2):265–273

    CAS  PubMed  Google Scholar 

  • Santos CX, Nabeebaccus AA, Shah AM, Camargo LL, Filho SV, Lopes LR (2014) Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal 20(1):121–134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarafian TA, Vartavarian L, Kane DJ, Bredesen DE, Verity MA (1994) bcl-2 Expression decreases methyl mercury-induced free-radical generation and cell killing in a neural cell line. Toxicol Lett 74(2):149–155

    CAS  PubMed  Google Scholar 

  • Shanker G, Aschner JL, Syversen T, Aschner M (2004) Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res 128(1):48–57

    CAS  PubMed  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P (2008) Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun 372(2):341–345

    CAS  PubMed  Google Scholar 

  • Shimojo N, Kumagai Y, Homma-Takeda S, Shinyashiki M, Takasawa N, Kushida K (1996) Isozyme selective induction of mouse pulmonary superoxide dismutase by the exposure to mercury vapor. Environ Toxicol Pharmacol 2(1):35–37

    CAS  PubMed  Google Scholar 

  • Shinada M, Muto H, Okamura Y, Takizawa Y (1990) Induction of phospholipid peroxidation and its characteristics by methylmercury chloride and mercuric chloride in rat kidney. Chemosphere 21(1):57–67

    CAS  Google Scholar 

  • Sidorenkov O, Nilssen O, Grjibovski AM (2010) Metabolic syndrome in Russian adults: associated factors and mortality from cardiovascular diseases and all causes. BMC Public Health 10:582

    PubMed Central  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    CAS  PubMed  Google Scholar 

  • Sin WC, Wong MK, Sin YM (1989) Changes in tissue glutathione and mercury concentrations in rats following mercuric chloride injection through the hepatic portal vein. Bull Environ Contam Toxicol 42(6):942–948

    CAS  PubMed  Google Scholar 

  • Skalnaya MG, Demidov VA (2007) Hair trace element contents in women with obesity and type 2 diabetes. J Trace Elem Med Biol 21(1):59–61

    CAS  PubMed  Google Scholar 

  • Skalnaya MG, Tinkov AA, Demidov VA, Serebryansky EP, Nikonorov AA, Skalny AV (2014) Hair toxic element content in adult men and women in relation to body mass index. Biol Trace Elem Res 161(1):13–19

    CAS  PubMed  Google Scholar 

  • Solomon HS, Hollenberg NK (1975) Catecholamine release: mechanism of mercury-induced vascular smooth muscle contraction. Am J Physiol 229(1):8–12

    CAS  PubMed  Google Scholar 

  • Sorg O, Schilter B, Honegger P, Monnet-Tschudi F (1998) Increased vulnerability of neurones and glial cells to low concentrations of methylmercury in a prooxidant situation. Acta Neuropathol 96(6):621–627

    CAS  PubMed  Google Scholar 

  • Sponder M, Fritzer-Szekeres M, Marculescu R, Mittlböck M, Uhl M, Köhler-Vallant B, Strametz-Juranek J (2014) Blood and urine levels of heavy metal pollutants in female and male patients with coronary artery disease. Vasc Health Risk Manag 10:311–317

    PubMed Central  PubMed  Google Scholar 

  • Stacchiotti A, Li Volti G, Lavazza A, Rezzani R, Rodella LF (2009a) Schisandrin B stimulates a cytoprotective response in rat liver exposed to mercuric chloride. Food Chem Toxicol 47(11):2834–2840

    CAS  PubMed  Google Scholar 

  • Stacchiotti A, Morandini F, Bettoni F, Schena I, Lavazza A, Grigolato PG, Apostoli P, Rezzani R, Aleo MF (2009b) Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology 264(3):215–224

    CAS  PubMed  Google Scholar 

  • Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JB, Aschner M, Farina M (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227(1):147–154

    PubMed Central  CAS  PubMed  Google Scholar 

  • Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26(4):215–226

    CAS  PubMed  Google Scholar 

  • Taher M, Orouji H, Mokhtarian D (2000) Study of the changes in serum lipids following mercury intoxification. J Res Med Sci 5(2):38–40

    Google Scholar 

  • Takahashi H, Nomiyama H, Nomiyama K (2000) Mercury elevates systolic blood pressure in spontaneously hypertensive rats. J Trace Elem Exp Med 13(2):227–237

    CAS  Google Scholar 

  • Tinkov AA, Skalnaya MG, Demidov VA, Serebryansky EP, Nikonorov AA, Skalny AV (2014) Hair mercury association with selenium, serum lipid spectrum and gamma-glutamyl transferase activity in adults. Biol Trace Elem Res 161(3):255–262

    CAS  PubMed  Google Scholar 

  • Tomera JF, Harakal C (1986) Mercury- and lead-induced contraction of aortic smooth muscle in vitro. Arch Int Pharmacodyn Ther 283(2):295–302

    CAS  PubMed  Google Scholar 

  • Torres AD, Rai AN, Hardiek ML (2000) Mercury intoxication and arterial hypertension: report of two patients and review of the literature. Pediatrics 105(3):E34

    CAS  PubMed  Google Scholar 

  • Tunali-Akbay T, Sener G, Salvarli H, Sehirli O, Yarat A (2007) Protective effects of Ginkgo biloba extract against mercury(II)-induced cardiovascular oxidative damage in rats. Phytother Res 21(1):26–31

    PubMed  Google Scholar 

  • Usuki F, Fujita E, Sasagawa N (2008) Methylmercury activates ASK1/JNK signaling pathways, leading to apoptosis due to both mitochondria- and endoplasmic reticulum (ER)-generated processes in myogenic cell lines. Neurotoxicology 29(1):22–30

    CAS  PubMed  Google Scholar 

  • Usuki F, Yamashita A, Fujimura M (2011) Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem 286(8):6641–6649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Usuki F, Fujimura M, Yamashita A (2013) Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses. Sci Rep 3:2346

    PubMed Central  PubMed  Google Scholar 

  • Valera B, Dewailly E, Poirier P (2009) Environmental mercury exposure and blood pressure among Nunavik Inuit adults. Hypertension 54(5):981–986

    CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    CAS  PubMed  Google Scholar 

  • Van der Linden WE, Beers C (1974) Determination of the composition and the stability constants of complexes of mercury (II) with amino acids. Anal Chim Acta 68(1):143–154

    PubMed  Google Scholar 

  • Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Järvinen H, Svegliati-Baroni G (2010) From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 42(5):320–330

    CAS  PubMed  Google Scholar 

  • Vaziri ND, Rodríguez-Iturbe B (2006) Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2(10):582–593

    CAS  PubMed  Google Scholar 

  • Villanueva MBG, Koizumi S, Jonai H (2000) Cytokine production by human peripheral blood mononuclear cells after exposure to heavy metals. J Health Sci 46(5):358–362

    CAS  Google Scholar 

  • Vupputuri S, Longnecker MP, Daniels JL, Guo X, Sandler DP (2005) Blood mercury level and blood pressure among US women: results from the National Health and Nutrition Examination Survey 1999–2000. Environ Res 97(2):195–200

    CAS  PubMed  Google Scholar 

  • Wada O, Yamaguchi N, Ono T, Nagahashi M, Morimura T (1976) Inhibitory effect of mercury on kidney glutathione peroxidase and its prevention by selenium. Environ Res 12(1):75–80

    CAS  Google Scholar 

  • Wagner C, Sudati JH, Nogueira CW, Rocha JB (2010) In vivo and in vitro inhibition of mice thioredoxin reductase by methylmercury. Biometals 23(6):1171–1177

    CAS  PubMed  Google Scholar 

  • Walczak-Drzewiecka A, Wyczółkowska J, Dastych J (2005) c-Jun N-terminal kinase is involved in mercuric ions-mediated interleukin-4 secretion in mast cells. Int Arch Allergy Immunol 136(2):181–190

    CAS  PubMed  Google Scholar 

  • Wataha JC, Lewis JB, McCloud VV, Shaw M, Omata Y, Lockwood PE, Messer RL, Hansen JM (2008) Effect of mercury(II) on Nrf2, thioredoxin reductase-1 and thioredoxin-1 in human monocytes. Dent Mater 24(6):765–772

    CAS  PubMed  Google Scholar 

  • Watanabe C, Kasanuma Y, Dejima Y, Satoh H (1999) The effect of prenatal methylmercury exposure on the GSH level and lipid peroxidation in the fetal brain and placenta of mice. The Tohoku journal of experimental medicine 187(2):121–126

    CAS  PubMed  Google Scholar 

  • Wiggers GA, Peçanha FM, Briones AM, Pérez-Girón JV, Miguel M, Vassallo DV, Cachofeiro V, Alonso MJ, Salaices M (2008a) Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol 295(3):H1033–H1043

    CAS  PubMed  Google Scholar 

  • Wiggers GA, Stefanon I, Padilha AS, Peçanha FM, Vassallo DV, Oliveira EM (2008b) Low nanomolar concentration of mercury chloride increases vascular reactivity to phenylephrine and local angiotensin production in rats. Comp Biochem Physiol C Toxicol Pharmacol 147(2):252–260

    PubMed  Google Scholar 

  • Wolf MB, Baynes JW (2007) Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 20(1):73–81

    CAS  PubMed  Google Scholar 

  • Woods JS, Ellis ME (1995) Up-regulation of glutathione synthesis in rat kidney by methyl mercury. Relationship to mercury-induced oxidative stress. Biochem Pharmacol 50(10):1719–1724

    CAS  PubMed  Google Scholar 

  • Wössmann W, Kohl M, Grüning G, Bucsky P (1999) Mercury intoxication presenting with hypertension and tachycardia. Arch Dis Child 80(6):556–557

    PubMed  Google Scholar 

  • Wu Z, Turner DR, Oliveira DB (2001) IL-4 gene expression up-regulated by mercury in rat mast cells: a role of oxidant stress in IL-4 transcription. Int Immunol 13(3):297–304

    CAS  PubMed  Google Scholar 

  • Xia Z, Zhang YM, Ren J (2012) Endoplasmic Reticulum stress and metabolic syndrome: mechanisms and therapeutic potential. Acta Neuropharmacologica 2(1):33–44

    Google Scholar 

  • Yasutake A, Nakano A, Miyamoto K, Eto K (1997) Chronic effects of methylmercury in rats. I. Biochemical aspects. Tohoku J Exp Med 182(3):185–196

    CAS  PubMed  Google Scholar 

  • Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131(1):1–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yonaha M, Saito M, Sagai M (1983) Stimulation of lipid peroxidation by methyl mercury in rats. Life Sci 32(13):1507–1514

    CAS  PubMed  Google Scholar 

  • Yoshizawa K, Rimm EB, Morris JS, Spate VL, Hsieh CC, Spiegelman D, Stampfer MJ, Willett WC (2002) Mercury and the risk of coronary heart disease in men. N Engl J Med 347(22):1755–1760

    CAS  PubMed  Google Scholar 

  • You CH, Kim BG, Kim JM, Yu SD, Kim YM, Kim RB, Hong YS (2011) Relationship between blood mercury concentration and waist-to-hip ratio in elderly Korean individuals living in coastal areas. J Prev Med Public Health 44(5):218–225

    PubMed Central  PubMed  Google Scholar 

  • Youn JY, Siu KL, Lob HE, Itani H, Harrison DG, Cai H (2014) Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes 63(7):2344–2355

    PubMed  Google Scholar 

  • Young CN, Cao X, Guruju MR, Pierce JP, Morgan DA, Wang G, Iadecola C, Mark AL, Davisson RL (2012) ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension. J Clin Invest 122(11):3960–3964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zabiński Z, Dabrowski Z, Moszczyński P, Rutowski J (2000) The activity of erythrocyte enzymes and basic indices of peripheral blood erythrocytes from workers chronically exposed to mercury vapours. Toxicol Ind Health 16(2):58–64

    PubMed  Google Scholar 

  • Zahir F, Rizvi SJ, Haq SK, Khan RH (2006) Effect of methyl mercury induced free radical stress on nucleic acids and protein: implications on cognitive and motor functions. Indian J Clin Biochem 21(2):149–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zalba G, San José G, Moreno MU, Fortuño MA, Fortuño A, Beaumont FJ, Díez J (2001) Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38(6):1395–1399

    CAS  PubMed  Google Scholar 

  • Zdolsek JM, Söder O, Hultman P (1994) Mercury induces in vivo and in vitro secretion of interleukin-1 in mice. Immunopharmacology 28(3):201–208

    CAS  PubMed  Google Scholar 

  • Zefferino R, Piccaluga S, Lasalvia M, D’ Andrea G, Margaglione M, Ambrosi L (2006) Role of tumour necrosis factor alpha and interleukin 1 beta in promoter effect induced by mercury in human keratinocytes. Int J Immunopathol Pharmacol 19(4):15–20

    CAS  PubMed  Google Scholar 

  • Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203):455–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Liu X, Yu Y, Hong X, Christoffel KK, Wang B, Tsai HJ, Li Z, Liu X, Tang G, Xing H, Brickman WJ, Zimmerman D, Xu X, Wang X (2009) Genetic and environmental contributions to phenotypic components of metabolic syndrome: a population-based twin study. Obesity (Silver Spring) 17(8):1581–1587

    CAS  Google Scholar 

  • Zhang Y, Jiang X, Zhao X, Qian H, Wang S, Xing G, Wang S, Lu R (2010) Time-course effect and region-specificity of endoplasmic reticulum stress in rat brains acutely exposed by methylmercury. Wei Sheng Yan Jiu 39(3):271–274

    PubMed  Google Scholar 

  • Zhang Y, Lu R, Liu W, Wu Y, Qian H, Zhao X, Wang S, Xing G, Yu F, Aschner M (2013) Hormetic effects of acute methylmercury exposure on grp78 expression in rat brain cortex. Dose Response 11(1):109–120

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Richard A. Anderson for helpful discussions and corrections of the manuscript. The current research is supported by Russian Ministry of Education and Science within project No. 2014/258-544.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinkov, A.A., Ajsuvakova, O.P., Skalnaya, M.G. et al. Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals 28, 231–254 (2015). https://doi.org/10.1007/s10534-015-9823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9823-2

Keywords

Navigation