Skip to main content

Advertisement

Log in

The response of the TonB-dependent transport network in Anabaena sp. PCC 7120 to cell density and metal availability

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

TonB dependent transporters (TBDT) are an essential protein family in bacteria involved in the uptake of a broad variety of molecules such as siderophore-chelated iron, which was the first described substrate. Meanwhile it is known that TBDTs are involved in the uptake of many metals, sugars and polypeptides. The action of TBDTs is regulated and energized by the plasma membrane anchored TonB, which is charged by a proton pump. The number of the genes coding for TBDTs varies in different species, which might reflect environmental adaptations or evolutionary variations of the system. For example, in the cyanobacterium Anabaena sp. PCC 7120 the large number of 22 genes coding for TBDTs has been identified and the expression of these genes has been explored in the absence of iron or copper as well as under nitrogen starvation. We describe the analysis of the expression of the TBDT genes and the according cytoplasmic-membrane localized components; the latter appear to have a lower degree of complexity in Anabaena sp. PCC 7120. This analysis unravels that the response is not sole dependent on the metal supply, but also on cell culture densities. In addition, we present a large group of FhuA-like genes which is expressed highest under standard conditions suggesting a function distinct from iron or copper transport. The genes are clustered according to the expression profile and the consequences for our understanding of the transport systems in Anabaena sp. PCC 7120 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmer BM, Thomas MG, Larsen RA, Postle K (1995) Characterization of the exbBD operon of Escherichia coli and the role of ExbB and ExbD in TonB function and stability. J Bacteriol 177:4742–4747

    Google Scholar 

  • Alice AF, Naka H, Crosa JH (2008) Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. Infect Immun 76:4019–4037

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC (1998) Iron storage in bacteria. Adv Microb Physiol 40:281–351

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Bassford PJ Jr, Schnaitman CA, Kadner RJ (1997) Functional stability of the bfe and tonB gene products in Escherichia coli. J Bacteriol 130:750–758

    Google Scholar 

  • Bohnsack MT, Kos M, Tollervey D (2008) Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase. EMBO Rep 9:1230–1236

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15:328–334

    Article  PubMed  CAS  Google Scholar 

  • Chimento DP, Kadner RJ, Wiener MC (2005) Comparative structural analysis of TonB-dependent outermembrane transporters: implications for the transport cycle. PROTEINS 59:240–251

    Article  PubMed  CAS  Google Scholar 

  • Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611

    Article  PubMed  CAS  Google Scholar 

  • Clarke SE, Stuart J, Sanders-Loehr J (1987) Induction of siderophore activity in Anabaena spp. and moderation of copper toxicity. Appl Environ Microbiol 53:917–922

    PubMed  CAS  Google Scholar 

  • de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454

    Article  PubMed  Google Scholar 

  • Elhai J, Wolk CP (1988) A versatile class of positive selection vectors based on the nonviability of palindrome containing plasmids that allows cloning into long polylinkers. Gene 68:119–138

    Article  PubMed  CAS  Google Scholar 

  • Faraldo-Gómez JD, Sansom MS (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116

    Article  PubMed  Google Scholar 

  • Foster JW, Hall HK (1992) Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol 174:4317–4323

    PubMed  CAS  Google Scholar 

  • González A, Bes MT, Barja F, Peleato ML, Fillat MF (2010) Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology. Plant Cell Physiol 51:1900–1914

    Article  PubMed  Google Scholar 

  • González A, Besm MT, Valladares A, Peleato ML, Fillat MF (2012) FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in Anabaena sp. PCC 7120. Environ Microbiol 14:3175–3187

    Article  PubMed  Google Scholar 

  • Hagen TA, Cornelissen CN (2006) Neisseria gonorrhoeae requires expression of TonB and the putative transporter TdfF to replicate within cervical epithelial cells. Mol Microbiol 62:1144–1157

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1987) Ferrous iron transport mutants in Escherichia coli K12. FEMS Microbiol Lett 44:53–57

    Article  CAS  Google Scholar 

  • Hernández-Prieto MA, Schön V, Georg J, Barreira L, Varela J, Hess WR, Futschik ME (2012) Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3 (Bethesda) 2:1475–1495

    Article  Google Scholar 

  • Higgs PI, Larsen RA, Postle K (2002) Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA. Mol Microbiol 44:271–281

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson BM, Morel FM (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22:659–669

    Article  PubMed  CAS  Google Scholar 

  • Jeanjean R, Talla E, Latifi A, Havaux M, Janicki A, Zhang CC (2008) A large gene cluster encoding peptide synthetases and polyketide synthases is involved in production of siderophores and oxidative stress response in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 10:2574–2585

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Hagino N, Grossman AR, Ogawa T (2001) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:2779–2784

    Article  PubMed  CAS  Google Scholar 

  • Keyer K, Gort AS, Imlay JA (1995) Superoxide and the production of oxidative DNA damage. J Bacteriol 177:6782–6790

    PubMed  CAS  Google Scholar 

  • Krantzler C, Rudolf M, Keren N, Schleiff E (2013) Iron in cyanobacteria. In: Chauvat F, Cassier‐Chauvat C (eds) Advances in botanical research 65: genomics of cyanobacteria. Elsevier Ltd, Amsterdam, pp 57–105

    Chapter  Google Scholar 

  • Lammers PJ, Sanders-Loehr J (1982) Active transport for ferric schizokinen in Anabaena sp. J Bacteriol 151:288–294

    PubMed  CAS  Google Scholar 

  • McHugh JP, Rodríguez-Quinoñes F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278:29478–29486

    Article  PubMed  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  PubMed  CAS  Google Scholar 

  • Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E (2009) TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol 7:68

    Article  PubMed  Google Scholar 

  • Mirus O, Hahn A, Schleiff E (2010) Outer membrane proteins. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall compounds. Structure and biochemistry. Springer-Verlag, Berlin, pp 175–230

    Chapter  Google Scholar 

  • Moslavac S, Bredemeier R, Mirus O, Granvogl B, Eichacker LA, Schleiff E (2005) Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J Proteome Res 4:1330–1338

    Article  PubMed  CAS  Google Scholar 

  • Napolitano M, Rubio MÁ, Santamaría-Gómez J, Olmedo-Verd E, Robinson NJ, Luque I (2012) Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 194:2426–2436

    Article  PubMed  CAS  Google Scholar 

  • Nicolaisen K, Schleiff E (2010) Iron dependency of and transport by cyanobacteria. In: Andrews S, Cornelis P (eds) Iron uptake in microorganisms. Horizon Scientific Press, Norwich, pp 203–229

    Google Scholar 

  • Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K, Maldener I, Muro-Pastor AM, Flores E, Schleiff E (2008) Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. J Bacteriol 190:7500–7507

    Article  PubMed  CAS  Google Scholar 

  • Nicolaisen K, Hahn A, Valdebenito M, Moslavac S, Samborski A, Maldener I, Wilken C, Valladares A, Flores E, Hantke K, Schleiff E (2010) The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta 1798:2131–2140

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KK, Boye M (2005) Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions. Appl Environ Microbiol 71:2949–2954

    Article  PubMed  CAS  Google Scholar 

  • Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60

    Article  PubMed  CAS  Google Scholar 

  • Olmedo-Verd E, Muro-Pastor AM, Flores E, Herrero A (2006) Localized induction of the ntcA regulatory gene in developing heterocysts of Anabaena sp. strain PCC 7120. J Bacteriol 188:6694–6699

    Article  PubMed  CAS  Google Scholar 

  • Postle K (1990) Aerobic regulation of the Escherichia coli tonB gene by changes in iron availability and the fur locus. J Bacteriol 172:2287–2293

    PubMed  CAS  Google Scholar 

  • Postle K, Good RF (1985) A bidirectional rho-independent transcription terminator between the E. coli tonB gene and an opposing gene. Cell 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Dereules J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain stories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  PubMed  CAS  Google Scholar 

  • Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 33:330–338

    Article  PubMed  CAS  Google Scholar 

  • Simpson FB, Neiland JB (1976) Siderochromesin cyanophyceae: isolation and characterization of schizokinen from Anabaena sp. J Phycol 12:44–48

    Google Scholar 

  • Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839

    Article  PubMed  CAS  Google Scholar 

  • Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E (2012) The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 14:1655–1670

    Article  PubMed  CAS  Google Scholar 

  • Touati D, Jacques M, Tardat B, Bouchard L, Despied S (1995) Lethal oxidative damage and mutagenesis are generated by iron in Δfur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 177:2305–2314

    PubMed  CAS  Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34:399–413

    Article  PubMed  CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC (2005) TonB-dependent outer membrane transport: going for Baroque? Curr Opin Struct Biol 15:394–400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Alexander Hahn, Mareike Rudolf and Maike Ruprecht for helpful discussions and technical support. We thank Stefan Simm for the cluster analysis. The work was supported by grants from Deutsche Forschungsgemeinschaft (DFG SCHL585/6–1) and the Cluster of Excellence ‘Macromolecular Complexes’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Schleiff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanovic, M., Lehmann, C. & Schleiff, E. The response of the TonB-dependent transport network in Anabaena sp. PCC 7120 to cell density and metal availability. Biometals 26, 549–560 (2013). https://doi.org/10.1007/s10534-013-9644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9644-0

Keywords

Navigation