Skip to main content

Advertisement

Log in

Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries

  • Synthesis and Emerging Ideas
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

New conceptual models that highlight the importance of environmental, rather than molecular, controls on soil organic matter affect interpretations of organic matter (OM) persistence across terrestrial and aquatic boundaries. We propose that changing paradigms in our thinking about OM decomposition explain some of the uncertainties surrounding the fate of land-derived carbon (C) in marine environments. Terrestrial OM, which historically has been thought to be chemically recalcitrant to decay in soil and aquatic environments, dominates inputs to rivers yet is found in trace amounts in the ocean. We discuss three major transformations in our understanding of OM persistence that influence interpretations of the fate of aquatic OM: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover; (2) new interpretations of radiocarbon ages, which affect predictions of reactivity; and (3) the recognition that most OM leaving soils in dissolved form has been microbially processed. The first two explain rapid turnover for terrigenous OM in aquatic ecosystems once it leaves the soil matrix. The third suggests that the presence of terrestrial OM in aquatic ecosystems may be underestimated by the use of plant biomarkers. Whether these mechanisms occur in isolation of each other or in combination, they provide insight into the missing terrestrial C signature in the ocean. Spatially and temporally varying transformations of OM along land–water networks require that common terrestrial source indicators be interpreted within specific environmental contexts. We identify areas of research where collaborations between aquatic and terrestrial scientists will enhance quantification of C transfer from soils to inland water bodies, the ocean, and the atmosphere. Accurate estimates of OM processing are essential for improving predictions of the response of vulnerable C pools at the interface of soil and water to changes in climate and land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aller RC, Blair NE, Brunskill GJ (2008) Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea). J Geophys Res 113:F01S09. doi:10.1029/2006jf000689

    Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9(1):53–60

    Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083

    Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600

    Google Scholar 

  • Benner R, Kaiser K (2011) Biological and photochemical transformations of amino acids and lignin phenols in riverine dissolved organic matter. Biogeochemistry 102(1–3):209–222. doi:10.1007/s10533-010-9435-4

    Google Scholar 

  • Benner R, Weliky K, Hedges JI (1990) Early diagenesis of mangrove leaves in a tropical estuary: molecular-level analyses of neutral sugars and lignin-derived phenols. Geochim Cosmochim Acta 54(7):1991–2001

    Google Scholar 

  • Benner R, Benitez-Nelson B, Kaiser K, Amon RMW (2004) Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys Res Lett 31:L05305. doi:10.01029/02003GL019251

    Google Scholar 

  • Benner R, Louchouarn P, Amon RMW (2005) Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Glob Biogeochem Cycles 19(2):GB2025. doi:10.1029/2004gb002398

    Google Scholar 

  • Berhe A, Kleber M (2013) Erosion, deposition, and the persistence of soil organic matter: important considerations and problems with terminology. Earth Surf Proc Land 38:908–912

    Google Scholar 

  • Bernardes MC, Martinelli LA, Krusche AV, Gudeman J, Moreira M, Victoria RL, Ometto J, Ballester MVR, Aufdenkampe AK, Richey JE, Hedges JI (2004) Riverine organic matter composition as a function of land use changes, Southwest Amazon. Ecol Appl 14(4):S263–S279

    Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA 108(49):19473–19481. doi:10.1073/pnas.1017982108

    Google Scholar 

  • Blair NE, Aller RC (2012) The fate of terrestrial organic carbon in the marine environment. Annu Rev Mar Sci 4:401–423

    Google Scholar 

  • Bouillon S, Yambele A, Spencer RGM, Gillikin DP, Hernes PJ, Six J, Merckx JR, Borges AV (2012) Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin). Biogeosciences 9:2045–2062

    Google Scholar 

  • Brocks JJ, Summons RE (2003) Sedimentary hydrocarbons, biomarkers for early life. Treatise Geochem 8:63–115

    Google Scholar 

  • Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128:116–129

    Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114(3–4):315–329. doi:10.1016/0009-2541(94)90061-2

    Google Scholar 

  • Caraco N, Bauer JE, Cole JJ, Petsch S, Raymond P (2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology 91(8):2385–2393. doi:10.1890/09-0330.1

    Google Scholar 

  • Carrington EM, Hernes PJ, Dyda RY, Plante AF, Six J (2012) Biochemical changes across a carbon saturation gradient: lignin, cutin, and suberin decomposition and stabilization in fractionated carbon pools. Soil Biol Biochem 47:179–190. doi:10.1016/j.soilbio.2011.12.024

    Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52(1):101–110

    Google Scholar 

  • Cole J, Prairie Y, Caraco N, McDowell W, Tranvik L, Striegl R, Duarte C, Kortelainen P, Downing J, Middelburg J, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185

    Google Scholar 

  • Corvasce M, Zsolnay A, D’Orazio V, Lopez R, Miano T (2006) Characterization of water extractable organic matter in a deep soil profile. Chemosphere 62:1583–1590

    Google Scholar 

  • Dai KH, Johnson CE, Driscoll CT (2001) Organic matter chemistry and dynamics in clear-cut and unmanaged hardwood forest ecosystems. Biogeochemistry 54(1):51–83. doi:10.1023/a:1010697518227

    Google Scholar 

  • Dalzell BJ, King JY, Mulla DJ, Finlay JC, Sands GR (2011) Influence of subsurface drainage on quantity and quality of dissolved organic matter export from agricultural landscapes. J Geophys Res 116(G2):G02023. doi:10.1029/2010JG001540

    Google Scholar 

  • de la Rosa JM, Knicker H (2011) Bioavailability of N released from N-rich pyrogenic organic matter: an incubation study. Soil Biol Biochem 43(12):2368–2373

    Google Scholar 

  • DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P, Simmons B, Sublette K, Silver WL, Hazen TC (2011) Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE 6:4. doi:10.1371/journal.pone.0019306

    Google Scholar 

  • Dignac MF, Bahri H, Rumpel C, Rasse DP, Bardoux G, Balesdent J, Girardin C, Chenu C, Mariotti A (2005) 13C natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France). Geoderma 128(1–2):3–17. doi:10.1016/j.geoderma.2004.12.022

    Google Scholar 

  • Dittmar T, de Rezende CE, Manecki M, Niggemann J, Coelho Ovalle AR, Stubbins A, Bernardes MC (2012) Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat Geosci 5(9):618–622. doi:10.1038/ngeo1541

    Google Scholar 

  • Duan S, Bianchi T, Sampere T (2007) Temporal variability in the composition and abundance of terrestrially-derived dissolved organic matter in the lower Mississippi and Pearl Rivers. Mar Chem 103:172–184

    Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol 18(6):1781–1796. doi:10.1111/j.1365-2486.2012.02665.x

    Google Scholar 

  • Evans CD, Freeman C, Cork LG, Thomas DN, Reynolds B, Billett MF, Garnett MH, Norris D (2007) Evidence against recent climate-induced destabilisation of soil carbon from C-14 analysis of riverine dissolved organic matter. Geophys Res Lett 34:7. doi:10.1029/2007gl029431

    Google Scholar 

  • Feng X, Simpson A, Wilson K, Williams D, Simpson MJ (2008) Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat Geosci 1:836–839

    Google Scholar 

  • Feng X, Simpson A, Gregorich E, Elberling B, Hopkins DW, Sparrow AD, Novis PM, Greenfield LG, Simpson MJ (2010) Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley, Antarctica. Geochim Cosmochim Acta 74(22):6485–6498

    Google Scholar 

  • Galy V, Eglinton T (2011) Protracted storage of biospheric carbon in the Ganges–Brahmaputra basin. Nat Geosci 4(12):843–847. doi:10.1038/ngeo1293

    Google Scholar 

  • Galy V, France-Lanord C, Beyssac O, Faure P, Kudrass H, Palhol F (2007) Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450(7168):407–410

    Google Scholar 

  • Gleixner G (2013) Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies. Ecol Res. doi:10.1007/s11284-012-1022-9

    Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33(3):357–366

    Google Scholar 

  • Grimm NB, Gergel SE, McDowell WH, Boyer EW, Dent CL, Groffman P, Hart SC, Harvey J, Johnston C, Mayorga E, McClain ME, Pinay G (2003) Merging aquatic and terrestrial perspectives of nutrient biogeochemistry. Oecologia 442:485–501

    Google Scholar 

  • Guggenberger G, Rodionov A, Shibistova O, Grabe M, Kasansky OA, Fuchs H, Mikheyeva N, Zrazhevskaya G, Flessa H (2008) Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob Change Biol 14:1367–1381

    Google Scholar 

  • Guo LD, Ping CL, Macdonald RW (2007) Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys Res Lett 34(13):L13603. doi:10.1029/2007gl030689

    Google Scholar 

  • Gurwick NP, McCorkle DM, Groffman PM, Gold AJ, Kellogg DQ, Seitz-Rundlett P (2008) Mineralization of ancient carbon in the subsurface of riparian forests. J Geophys Res 113(G2):G02021. doi:10.1029/2007jg000482

    Google Scholar 

  • Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5(5):1339–1350

    Google Scholar 

  • Hanson PC, Hamilton DP, Stanley EH, Preston N, Langman OC, Kara EL (2011) Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. PLoS ONE 6(7):e21884. doi:10.21371/journal.pone.0021884

    Google Scholar 

  • Hatcher PG (2004) The CHNs of organic geochemistry: characterization of molecularly uncharacterized non-living organic matter. Mar Chem 92(1–4):5–8. doi:10.1016/j.marchem.2004.06.014

    Google Scholar 

  • Hayes MHB (2009) Evolution of concepts of environmental natural nonliving organic matter. In: Senesi N, Xing B, Huang PM (eds) Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. Wiley, Hoboken, pp 1–39. doi:10.1002/9780470494950.ch1

    Google Scholar 

  • Hayes MHB, Clapp CE (2001) Humic substances: considerations of compositions, aspects of structure, and environmental influences. Soil Sci 166(11):723–737. doi:10.1097/00010694-200111000-00002

    Google Scholar 

  • Hedges JI, Keil RG (1999) Organic geochemical perspectives on estuarine processes: sorption reactions and consequences. Mar Chem 65(1–2):55–65. doi:10.1016/s0304-4203(99)00010-9

    Google Scholar 

  • Hedges JI, Mann DC (1979) Characterization of plant tissues by their lignin oxidation products. Geochim Cosmochim Acta 43(11):1803–1807. doi:10.1016/0016-7037(79)90028-0

    Google Scholar 

  • Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27(7–8):319–361

    Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27(5–6):195–212. doi:10.1016/s0146-6380(97)00066-1

    Google Scholar 

  • Hedges J, Eglinton G, Hatcher P, Kirchman D, Arnosti C, Derenne S, Evershed R, Kögel-Knabner I, De Leeuw J, Littke R (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31(10):945–958

    Google Scholar 

  • Henrichs SM (1992) Early diagenesis of organic matter in marine sediments—progress and perplexity. Mar Chem 39(1–3):119–149. doi:10.1016/0304-4203(92)90098-u

    Google Scholar 

  • Hernes PJ, Benner R (2003) Photochemical and microbial degradation of dissolved lignin phenols: implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res 108(C9):3291. doi:10.1029/2002jc001421

    Google Scholar 

  • Hernes PJ, Robinson AC, Aufdenkampe AK (2007) Fractionation of lignin during leaching and sorption and implications for organic matter “freshness”. Geophys Res Lett 34:17. doi:10.1029/2007gl031017

    Google Scholar 

  • Hertkorn N, Claus H, Schmitt-Kopplin P, Perdue EM, Filip Z (2002) Utilization and transformation of aquatic humic substances by autochthonous microorganisms. Environ Sci Technol 36(20):4334–4345. doi:10.1021/es010336o

    Google Scholar 

  • Heyes A, Moore TR (1992) The influence of dissolved organic carbon and anaerobic conditions on mineral weathering. Soil Sci 154(3):226–236. doi:10.1097/00010694-199209000-00006

    Google Scholar 

  • Hilli S, Stark S, Willfor S, Smeds A, Reunanen M, Hautajarvi R (2012) What is the composition of AIR? Pyrolysis-GC-MS characterization of acid-insoluble residue from fresh litter and organic horizons under boreal forests in southern Finland. Geoderma 179:63–72. doi:10.1016/j.geoderma.2012.02.010

    Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org Geochem 37(4):501–510. doi:10.1016/j.orggeochem.2005.11.003

    Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Acta 71(14):3432–3445

    Google Scholar 

  • Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35:3. doi:10.1029/2007gl032837

    Google Scholar 

  • Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D, Scott D (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462(7276):1044–1100. doi:10.1038/nature08580

    Google Scholar 

  • Jaffé R, Ding Y, Niggemann J, Vähätolo AV, Stubbins A, Spencer RGM, Campbell J, Dittmar T (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–347

    Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo TW, Chen F, Azam F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8(8):593–599. doi:10.1038/nrmicro2386

    Google Scholar 

  • Jung B-J, Lee H-J, Jeong J-J, Owen J, Kim B, Meusburger K, Alewell C, Gebauer G, Shope C, Park J-H (2012) Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. J Hydrol 440:90–101. doi:10.1016/j.jhydrol.2012.03.030

    Google Scholar 

  • Kaiser K, Kalbitz K (2012) Cycling downwards—dissolved organic matter in soils. Soil Biol Biochem 52:29–32

    Google Scholar 

  • Kaiser K, Zech W (1997) Competitive sorption of dissolved organic matter fractions to soils and related mineral phases. Soil Sci Soc Am J 61(1):64–69

    Google Scholar 

  • Kaiser K, Zech W (1999) Release of natural organic matter sorbed to oxides and a subsoil. Soil Sci Soc Am J 63(5):1157–1166. doi:10.2136/sssaj1999.6351157x

    Google Scholar 

  • Keil RG, Mayer LM (2014) Mineral matrices and organic matter. Treatise Geochem Org Geochem 12:337–359

    Google Scholar 

  • Keil RG, Montlucon DB, Prahl FG, Hedges JI (1994) Sorptive preservation of labile organic matter in marine sediments. Nature 370(6490):549–552. doi:10.1038/370549a0

    Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi:10.1021/es9031419

    Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7(4):320–332. doi:10.1071/en10006

    Google Scholar 

  • Kleber M, Johnson MG (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agron 106:77–142

    Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85(1):9–24. doi:10.1007/s10533-007-9103-5

    Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Change Biol 17(2):1097–1107

    Google Scholar 

  • Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18(6):589–594

    Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34(2):139–162

    Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171(1):61–82

    Google Scholar 

  • Kramer C, Gleixner G (2006) Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol Biochem 38(11):3267–3278. doi:10.1016/j.soilbio.2006.04.006

    Google Scholar 

  • Kramer MG, Sanderman J, Chadwick OA, Chorover J, Vitousek PM (2012) Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in the soil. Glob Change Biol 18:2594–2605

    Google Scholar 

  • Lalonde K, Mucci A, Ouellet A, Gelinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200

    Google Scholar 

  • Lambert T, Pierson-Wickmann A-C, Gruau G, Thibault J-N, Jaffrezic A (2011) Carbon isotopes as tracers of dissolved organic carbon sources and water pathways in headwater catchments. J Hydrol 402(3–4):228–238. doi:10.1016/j.jhydrol.2011.03.014

    Google Scholar 

  • Lambert T, Pierson-Wickmann A-C, Gruau G, Jaffrezic A, Petitjean P, Thibault J-N, Jeanneau L (2013) Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment. Water Resour Res 49(9):5792–5803. doi:10.1002/wrcr.20466

    Google Scholar 

  • Laudon H, Berggren M, Ågren A, Buffam I, Bishop K, Grabs T, Jansson M, Köhler S (2011) Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: the role of processes, connectivity, and scaling. Ecosystems 14(6):880–893. doi:10.1007/s10021-011-9452-8

    Google Scholar 

  • Liang C, Balser TC (2011) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol 9(1):75. doi:10.1038/nrmicro2386-c1

    Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142(1–2):1–10. doi:10.1016/j.geoderma.2007.07.013

    Google Scholar 

  • Mann PJ, Sobczak W, LaRue M, Bulygina E, Davydova A, Vonk JE, Schade J, Davydov S, Zimov N, Holmes RM, Spencer RGM (2014) Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob Change Biol. doi:10.1111/gcb.12416

    Google Scholar 

  • Marin-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009) Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob Change Biol 15(6):1584–1597. doi:10.1111/j.1365-2486.2008.01805.x

    Google Scholar 

  • Marin-Spiotta E, Chadwick OA, Kramer M, Carbone MS (2011) Carbon delivery to deep mineral horizons in Hawaiian rain forest soils. J Geophys Res 116:G03011. doi:10.01029/02010JG001587

    Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113(3–4):211–235. doi:10.1016/s0016-7061(02)00362-2

    Google Scholar 

  • Martone PT, Estevez JM, Lu FC, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell wall architecture. Curr Biol 19(2):169–175. doi:10.1016/j.cub.2008.12.031

    Google Scholar 

  • Masiello CA, Druffel ERM (2001) Carbon isotope geochemistry of the Santa Clara River. Glob Biogeochem Cycles 15:407–416

    Google Scholar 

  • Masiello CA, Louchouarn P (2013) Fire in the ocean. Science 340(6130):287–288. doi:10.1126/science.1237688

    Google Scholar 

  • Mayer LM, Schick LL, Hardy KR, Estapa ML (2009) Photodissolution and other photochemical changes upon irradiation of algal detritus. Limnol Oceanogr 54(5):1688–1698. doi:10.4319/lo.2009.54.5.1688

    Google Scholar 

  • Mayorga E, Aufdenkampe A, Masiello C, Krusche A, Hedges J, Quay P, Richey J, Brown T (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    Google Scholar 

  • McCallister SL, del Giorgio PA (2012) Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. Proc Natl Acad Sci USA 109(42):16963–16968. doi:10.1073/pnas.1207305109

    Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Google Scholar 

  • Melillo J, Aber J, Linkins A, Ricca A, Fry B, Nadelhoffer K (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115(2):189–198

    Google Scholar 

  • Meyer JL, Edwards RT (1990) Ecosystem metabolism and turnover of organic carbon along a blackwater river continuum. Ecology 71(2):668–677. doi:10.2307/1940321

    Google Scholar 

  • Meyers P (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Google Scholar 

  • Miltner A, Kindler R, Knicker H, Richnow H-H, Kästner M (2009) Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org Geochem 40(9):978–985. doi:10.1016/j.orggeochem.2009.06.008

    Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111(1–3):41–55. doi:10.1007/s10533-011-9658-z

    Google Scholar 

  • Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493(7434):660. doi:10.1038/nature11818

    Google Scholar 

  • Mosher JJ, Klein GC, Marshall AG, Findlay RH (2010) Influence of bedrock geology on dissolved organic matter quality in stream water. Org Geochem 41(11):1177–1188. doi:10.1016/j.orggeochem.2010.08.004

    Google Scholar 

  • Nelson PN, Baldock JA, Oades JM (1993) Concentration and composition of dissolved organic carbon in streams in relation to catchment soil properties. Biogeochemistry 19(1):27–50

    Google Scholar 

  • Nocentini C, Certini G, Knicker H, Francioso O, Rumpel C (2010) Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Org Geochem 41(7):682–689

    Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5(1):35–70. doi:10.1007/bf02180317

    Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292(5518):917–920. doi:10.1126/science.1057627

    Google Scholar 

  • Onstad GD, Canfield DE, Quay PD, Hedges JI (2000) Sources of particulate organic matter in rivers from the continental USA: lignin phenol and stable carbon isotope compositions. Geochim Cosmochim Acta 64(20):3539–3546. doi:10.1016/s0016-7037(00)00451-8

    Google Scholar 

  • Opsahl S, Benner R (1998) Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43:1297–1304

    Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51(5):1173–1179

    Google Scholar 

  • Paul EA, Morris SJ, Conant RT, Plante AF (2006) Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools? Soil Sci Soc Am J 70(3):1023–1035. doi:10.2136/sssaj2005.0103

    Google Scholar 

  • Pellerin BA, Saraceno JF, Shanley JB, Sebestyen SD, Aiken GR, Wollheim WM, Bergamaschi BA (2012) Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream. Biogeochemistry 108(1–3):183–198. doi:10.1007/s10533-011-9589-8

    Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166(11):810–832. doi:10.1097/00010694-200111000-00007

    Google Scholar 

  • Preston C, Nault J, Trofymow J (2009) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘lignin’. Ecosystems 12(7):1078–1102

    Google Scholar 

  • Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409(6819):497–500. doi:10.1038/35054034

    Google Scholar 

  • Raymond P, Saiers J (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100(1):197–209. doi:10.1007/s10533-010-9416-7

    Google Scholar 

  • Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Global Biogeochem Cycles 21:4. doi:10.1029/2007gb002934

    Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Google Scholar 

  • Regnier P (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607

    Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Google Scholar 

  • Rumpel C, Eusterhues K, Kogel-Knabner I (2004) Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol Biochem 36(1):177–190. doi:10.1016/j.soilbio.2003.09.005

    Google Scholar 

  • Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20(2):166–171. doi:10.1139/x90-023

    Google Scholar 

  • Sanderman J, Baldock JA, Amundson R (2008) Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils. Biogeochemistry 89:181–198

    Google Scholar 

  • Sanderman J, Lohse KA, Baldock JA, Amundson R (2009) Linking soils and streams: sources and chemistry of dissolved organic matter in a small coastal watershed. Water Resour Res 45:W03418. doi:10.1029/2008wr006977

    Google Scholar 

  • Sanford GR (2012) Agroecosystem land management and its effect on soil organic carbon stocks and dynamics in the Mollisols of southern Wisconsin. PhD thesis, The University of Wisconsin-Madison, Madison, WI

  • Schindler JE, Krabbenhoft DP (1998) Dynamics of dissolved organic carbon and carbon gases in the hyporheic zone of a temperate stream. Biogeochemistry 43:157–174

    Google Scholar 

  • Schmidt MWI, Eglinton TI (2013) Unifying concepts of organic matter cycling in soil, river, and marine environments. EOS 94(15):145

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi:10.1038/nature10386

    Google Scholar 

  • Singh N, Abiven S, Torn MS, Schmidt MWI (2012) Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–2857

    Google Scholar 

  • Spencer RGM, Pellerin BA, Bergamaschi BA, Downing BD, Kraus TEC, Smart DR, Dahgren RA, Hernes PJ (2007) Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA). Hydrol Process 21(23):3181–3189. doi:10.1002/hyp.6887

    Google Scholar 

  • Spencer RGM, Stubbins A, Hernes PJ, Baker A, Mopper K, Aufdenkampe AK, Dyda RY, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2009) Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J Geophys Res 114:G03010. doi:10.1029/2009jg000968

    Google Scholar 

  • Spencer RGM, Hernes PJ, Ruf R, Baker A, Dyda RY, Stubbins A, Six J (2010) Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. J Geophys Res 115:G03013. doi:10.1029/2009jg001180

    Google Scholar 

  • Spencer RGM, Butler KD, Aiken GR (2012a) Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J Geophys Res 117:G03001. doi:10.1029/2011jg001928

    Google Scholar 

  • Spencer RGM, Hernes PJ, Aufdenkampe AK, Baker A, Gulliver P, Stubbins A, Aiken GR, Dyda RY, Butler KD, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2012b) An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim Cosmochim Acta 84:614–627. doi:10.1016/j.gca.2012.01.013

    Google Scholar 

  • Spencer RGM, Aiken GR, Wickland KP, Striegl RG, Hernes PJ (2008) Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob Biogeochem Cycles 22:GB4002. doi:10.1029/2008gb003231

    Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1:289–303

    Google Scholar 

  • Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT (2012) Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57:26–42

    Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32(21):L21413. doi:10.1029/2005GL024413

    Google Scholar 

  • Striegl RG, Dornblaser MM, McDonald CP, Rover JR, Stets EG (2012) Carbon dioxide and methane emissions from the Yukon River system. Glob Biogeochem Cycles 26:GB0E05. doi:10.1029/2012gb004306

    Google Scholar 

  • Stubbins A, Niggemann J, Dittmar T (2012a) Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9(5):1661–1670. doi:10.5194/bg-9-1661-2012

    Google Scholar 

  • Stubbins A, Hood E, Raymond PA, Aiken GR, Sleighter RL, Hernes PJ, Butman D, Hatcher PG, Striegl RG, Schuster P, Abdulla HAN, Vermilyea AW, Scott DT, Spencer RGM (2012b) Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nat Geosci 5(3):198–201

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39(23):9009–9015. doi:10.1021/es050778q

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, ZImov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. doi:10.1029/2008GB003327

    Google Scholar 

  • Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 219–272

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutserk T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Google Scholar 

  • Trumbore S (2009) Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci 37(1):47–66

    Google Scholar 

  • Vargas R, Detto M, Baldocchi DD, Allen MF (2010) Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob Change Biol 16(5):1589–1605. doi:10.1111/j.1365-2486.2009.02111.x

    Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57(4):426–445

    Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ludwig B, Flessa H, Matzner E, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124

    Google Scholar 

  • Vonk JE, Mann PJ, Davydov S, Davydova A, Spencer RGM, Schade J, Sobczak WV, Zimov N, Zimov S, Bulygina E, Eglinton TI, Holmes RM (2013) High biolability of ancient permafrost carbon upon thaw. Geophys Res Lett 40(11):2689–2693. doi:10.1002/grl.50348

    Google Scholar 

  • Waksman SA (1935) Chemical nature of organic matter or humus in soils, peat bogs and composts. J Chem Educ 12(11):511. doi:10.1021/ed012p511

    Google Scholar 

  • Wang ZA, Bienvenu DJ, Mann PJ, Hoering KA, Poulsen JR, Spencer RGM, Holmes RM (2013) Inorganic carbon speciation and fluxes in the Congo River. Geophys Res Lett 40(3):511–516. doi:10.1002/grl.50160

    Google Scholar 

  • Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE (2013) Degradation of terrestrially derived macromolecues in the Amazon River. Nat Geosci 6:530–533

    Google Scholar 

  • Wickland KP, Aiken GR, Butler K, Dornblaser MM, Spencer RGM, Striegl RG (2012) Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: seasonality and importance of inorganic nitrogen. Glob Biogeochem Cycles 26:GB0E03. doi:10.1029/2012gb004342

    Google Scholar 

  • Williams CJ, Yamashita Y, Wilson HF, Jaffe R, Xenopoulos MA (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55(3):1159–1171. doi:10.4319/lo.2010.55.3.1159

    Google Scholar 

  • Yang Y, Fang J, Guo D, Ji C, Ma W (2010) Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands. Biogeosci Discuss 7:1–24

    Google Scholar 

  • Young KC, Maurice PA, Docherty KM, Bridgham SD (2004) Bacterial degradation of dissolved organic matter from two northern Michigan streams. Geomicrobiol J 21(8):521–528. doi:10.1080/01490450490888208

    Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS (2006) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33:L20502. doi:10.1029/2006GL027484

    Google Scholar 

Download references

Acknowledgments

We thank L. Graham, M. Kleber, J. Sanderman and two anonymous reviewers for thorough and thoughtful comments that greatly improved earlier versions of the text and conceptual figures; K. Keefover-Ring for assistance with figures; G. Sanford for sharing data; the ISOGEOCHEM community for sharing references; and all Spring 2011 Geography 920 seminar participants and guests for lively discussions that led to the writing of this paper. We acknowledge support from NSF through DEB-0932440, DEB-1050742, and DBI-0610453 to E.M.S. and ETBC-0851101, OCE-1333157, ANT-1203885 and OPP-1107774 to R.G.M.S. This work was in part supported by the NSF-IGERT award DGE-1144752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Marín-Spiotta.

Additional information

Responsible Editor: Cory Cleveland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marín-Spiotta, E., Gruley, K.E., Crawford, J. et al. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117, 279–297 (2014). https://doi.org/10.1007/s10533-013-9949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-013-9949-7

Keywords

Navigation