, Volume 94, Issue 1, pp 63-80

First online:

Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico

  • Julie C. Pett-RidgeAffiliated withDepartment of Earth Sciences, University of Oxford Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The input of phosphorus (P) through mineral aerosol dust deposition may be an important component of nutrient dynamics in tropical forest ecosystems. A new dust deposition calculation is used to construct a broad analysis of the importance of dust-derived P to the P budget of a montane wet tropical forest in the Luquillo Mountains of Puerto Rico. The dust deposition calculation used here takes advantage of an internal geochemical signal (Sr isotope mass balance) to provide a spatially integrated longer-term average dust deposition flux. Dust inputs of P (0.23 ± 0.08 kg ha−1 year−1) are compared with watershed-average inputs of P to the soil through the conversion of underlying saprolite into soil (between 0.07 and 0.19 kg ha−1 year−1), and with watershed-average losses of soil P through leaching (between 0.02 and 0.14 kg ha−1 year−1) and erosion (between 0.04 and 1.38 kg ha−1 year−1). The similar magnitude of dust-derived P inputs to that of other fluxes indicates that dust is an important component of the soil and biomass P budget in this ecosystem. Dust-derived inputs of P alone are capable of completely replacing the total soil and biomass P pool on a timescale of between 2.8 ka and 7.0 ka, less than both the average soil residence time (~15 ka) and the average landslide recurrence interval (~10 ka).


Luquillo Mountains Dust Nutrient cycling Phosphorus