, Volume 88, Issue 1, pp 31–46

Nitrogen retention in the hyporheic zone of a glacial river in interior Alaska


    • Institute of Arctic BiologyUniversity of Alaska Fairbanks
  • Jeremy B. JonesJr
    • Institute of Arctic BiologyUniversity of Alaska Fairbanks
  • Knut Kielland
    • Institute of Arctic BiologyUniversity of Alaska Fairbanks
Original Paper

DOI: 10.1007/s10533-008-9192-9

Cite this article as:
Clilverd, H.M., Jones, J.B. & Kielland, K. Biogeochemistry (2008) 88: 31. doi:10.1007/s10533-008-9192-9


We examined the hydrologic controls on nitrogen biogeochemistry in the hyporheic zone of the Tanana River, a glacially-fed river, in interior Alaska. We measured hyporheic solute concentrations, gas partial pressures, water table height, and flow rates along subsurface flowpaths on two islands for three summers. Denitrification was quantified using an in situ 15NO3 push–pull technique. Hyporheic water level responded rapidly to change in river stage, with the sites flooding periodically in mid−July to early−August. Nitrate concentration was nearly 3-fold greater in river (ca. 100 μg NO3–N l−1) than hyporheic water (ca. 38 μg NO3–N l−1), but approximately 60–80% of river nitrate was removed during the first 50 m of hyporheic flowpath. Denitrification during high river stage ranged from 1.9 to 29.4 mg N kg sediment−1 day−1. Hotspots of methane partial pressure, averaging 50,000 ppmv, occurred in densely vegetated sites in conjunction with mean oxygen concentration below 0.5 mgOl−1. Hyporheic flow was an important mechanism of nitrogen supply to microbes and plant roots, transporting on average 0.41 gNO3–N m−2 day−1, 0.22 g NH4+–N m−2 day−1, and 3.6 g DON m−2 day−1 through surface sediment (top 2 m). Our results suggest that denitrification can be a major sink for river nitrate in boreal forest floodplain soils, particularly at the river-sediment interface. The stability of the river hydrograph and the resulting duration of soil saturation are key factors regulating the redox environment and anaerobic metabolism in the hyporheic zone.



Copyright information

© Springer Science+Business Media B.V. 2008