, Volume 76, Issue 2, pp 349-371

A River's Liver – Microbial Processes within the Hyporheic Zone of a Large Lowland River

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Little is known on microbial activities in the sediments of large lowland rivers despite of their potentially high influence on biogeochemical budgets. Based on field measurements in a variety of sedimentary habitats typical for a large lowland river (Elbe, Germany), we present results on the abundance and production of sedimentary bacteria, the potential activity of a set of extracellular enzymes, and potential nitrification and denitrification rates. A diving bell was used to access the sediments in the central river channel, enabling us to sample down to 1 m sediment depth. Depth gradients of all measures of microbial activity were controlled by sediment structure, hydraulic conditions, as well as by the supply with organic carbon and nitrogen. Microbial heterotrophic activity was tightly coupled with the availability of carbon and nitrogen, whereas chemolithotrophic activity (nitrification rate) was related to the available surface area of particles. In the central bed of the river, bacterial production and extracellular enzyme activity remained high down to the deepest sediment layers investigated. Due to the large inner surface area and their connectivity with the surface water, the shifting sediments in the central channel of the river were microbially highly active There, vertically integrated bacterial production amounted to 0.95 g C m−3 h−1, which was 2.9 to 5.5 times higher than in the nearshore habitats. We conclude that carbon and nitrogen cycling in the river is controlled by the live sediments of the central river channel, which thus represent a “liver function” in the river's metabolism.