, Volume 72, Issue 3, pp 315-336

Regional variation in soil carbon and δ13C in forests and pastures of northeastern Costa Rica

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Recent studies suggest that the direction and magnitude of changes in soil organic carbon (soil C) pools following forest-to-pasture conversion in the tropics are dependent upon initial soil conditions and local factors (e.g. pre-conversion soil C content, soil texture, vegetation productivity, and management practices). The goal of this study was to understand how landscape-scale variation in soil-forming factors influenced the response of soil C pools to forest clearing and pasture establishment in northeastern Costa Rica. We measured soil C and its stable isotopic composition in 24 paired pasture and reference forest sites distributed over large gradients of edaphic characteristics and slope throughout a 1400 km2 region. We used the large difference in stable C isotopic signatures of C3 vegetation (rain forest) versus C4 vegetation (pasture grasses) as a tracer of soil C dynamics. Soil C pools to 30 cm depth ranged from 26% lower to 23% higher in pastures compared to paired forests. The presence of non-crystalline clays and percent slope explained between 27 and 37% of the variation in the direction and magnitude of the changes in soil C storage following pasture establishment. Stable carbon isotopes (δ13C) in the top soil (0–10 cm) showed a rapid incorporation of pasture-derived C following pasture establishment, but the vegetation in these pastures never became pure C4 communities. The amount of forest-derived soil C in pasture topsoils (0–10 cm) was negatively correlated to both pasture age and the concentrations of non-crystalline iron oxides. Together these results imply that site factors such as soil mineralogy are an important control over soil C storage and turnover in this region.