Skip to main content
Log in

Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In this study, the inhibitory effect of TCE on nitrification process was investigated with an enriched nitrifier culture. TCE was found to be a competitive inhibitor of ammonia oxidation and the inhibition constant (K I ) was determined as 666–802 μg/l. The TCE affinity for the AMO enzyme was significantly higher than ammonium. The effect of TCE on ammonium utilization was evaluated with linearized plots of Monod equation (e.g., Lineweaver–Burk, Hanes–Woolf and Eadie–Hofstee plots) and non-linear least square regression (NLSR). No significant differences were found among these data evaluation methods in terms of kinetic parameters obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

I::

inhibitory (non-growth) substrate concentration, μg non-growth substrate/l

K I ::

inhibition constant of inhibitory (non-growth) substrate, μg non-growth substrate/l

K iu::

dissociation constant of enzyme-substrate-inhibitory substance (ESI) complex, μg non-growth substrate/l

\(K_{\rm S}^{\rm app}\)::

apparent half-saturation constant for growth substrate, mg substrate/l

K S::

half-saturation constant for growth substrate, mg growth substrate/l

q::

specific substrate utilization rate, mg substrate/g VSS h

\(q_{{\rm NH}_{4}\hbox {-}{\rm N}}\)::

specific ammonium utilization rate, mg NH4-N/g VSS h

q max::

maximum specific substrate utilization rate, mg substrate/g VSS h

\(q_{{\rm max, NH}_{4}\hbox {-}{\rm N}}\)::

maximum specific ammonium utilization rate, mg NH4-N/g VSS h

\(q_{{\rm max, NH}_{4}\hbox {-}{\rm N}}^{\rm app}\)::

apparent maximum specific ammonium utilization rate, mg NH4-N/g VSS h

References

  • Alpaslan Kocamemi B, Çeçen F, (2005) Cometabolic degradation of TCE in enriched nitrifying batch systems J. Hazard. Mater. B125: 260–265

    Article  Google Scholar 

  • Alpaslan Kocamemi B, (2005) Cometabolic Degradation of Trichloroethylene (TCE) and 1,2-Dichloroethane (1,2-DCA) in Nitrification Systems. PhD Dissertation Bogazici University Istanbul, Turkey

    Google Scholar 

  • Alvarez Cohen L, McCarty PL, (1991) Product toxicity and cometabolic competitive inhibition modelling of chloroform and trichloroethylene transformation by methanotrophic resting cells Appl. Environ. Microbiol. 57: 1031–1037

    PubMed  CAS  Google Scholar 

  • Anderson JE, McCarty PL, (1997) Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase Appl. Environ. Microbiol. 63(2): 687–693

    PubMed  CAS  Google Scholar 

  • APHA, AWWA, WEF (1998) Standard Methods for the Examination of Water and Wastewater. 20th edn, American Public Heath Association, Washington DC, USA

  • Arciero D, Vannelli T, Logan M, Hooper AB, (1989) Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas Europaea Biochem. Biophys. Res. Commun. 159(2): 640–643

    Article  PubMed  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1997) Toxicological Profile for Trichloroethylene, Atlanta, Georgia

  • Bailey JE, Ollis DF, (1986) Biochemical Engineering Fundamentals McGraw Hill Singapore

    Google Scholar 

  • Chang HL, Alvarez-Cohen L, (1995a) Model for the cometabolic biodegradation of chlorinated organics Environ. Sci. Technol. 29: 2357–2367

    Article  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L, (1995b) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol Biotechnol. Bioeng. 45: 440–449

    Article  CAS  Google Scholar 

  • Chu KH, Alvarez-Cohen L, (1999) Evaluation of toxic effects of aeration and trichloroethylene oxidation on Methanotrophic bacteria grown with different nitrogen sources Appl. Environ. Microbiol. 65(2): 766–772

    PubMed  CAS  Google Scholar 

  • Chu KH, Alvarez-Cohen L, (2000) Treatment of chlorinated solvents by nitrogen-fixing and nitrate-supplied methane oxidizers in columns packed with unsaturated porous media Environ. Sci. Technol. 34(9): 1784–1793

    Article  CAS  Google Scholar 

  • Cornish-Bowden A, (1995) Fundamentals of Enzyme Kinetics Portand Press Ltd London

    Google Scholar 

  • Duba AG, Jackson KJ, Jovanovich MC, Knapp RB, Taylor T, (1996) TCE remediation using in situ, resting-state bioaugmentation Environ. Sci. Technol. 30:1982–1989

    Article  CAS  Google Scholar 

  • Eguchi M, Kitagawa M, Suzuki Y, Nakamuara M, Kawai T, Okamura K, Sasaki S, Miyake Y, (2001) A field evaluation of in situ biodegradation of trichloroethylene through methane injection Wat. Res. 35(9): 2145–2152

    Article  CAS  Google Scholar 

  • Ely RL, Hyman MR, Arp DJ, Guenther RB, Williamson KJ, (1995) A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: II Trichloroethylene degradation experiments Biotechnol. Bioeng. 46(3): 232–245

    Article  CAS  Google Scholar 

  • Ely RL, Williamson KJ, Hyman MR, Arp DJ, (1997) Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response Biotechnol. Bioeng. 54(6): 520–534

    Article  CAS  Google Scholar 

  • EPA (1992) TCE removal from contaminated soil and groundwater. EPA/540/S-92/002, Office of Solid Waste and Emergency Response, US EPA, Washington, D.C

  • Fries MR, Forney LJ, Tiedje JM, (1997) Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred Appl. Environ. Microbiol. 63(4): 1523–1530

    CAS  Google Scholar 

  • Guo GL, Tseng DH, Huang SL, (2001) Co-metabolic degradation of trichloroethylene by Pseudomonas Putida in a fibrous bed bioreactor Biotechnol. Lett. 23: 1653–1657

    Article  CAS  Google Scholar 

  • Hyman MR, Russell SA, Ely RL, Williamson KJ, Arp DJ, (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas Europaea Appl. Environ. Microbiol. 61(4): 1480–1487

    CAS  Google Scholar 

  • Kang J, Lee EY, Park S, (2001) Co-metabolic biodegradation of trichloroethylene by Methylosinus Trichosporium is stimulated by low concentrations methane or methanol Biotechnol. Lett. 23: 1877–1882

    Article  CAS  Google Scholar 

  • Knightes CD, Peters CA, (2000) Statistical analysis of nonlinear parameter estimation for monod biodegradation kinetics using bivariate data Biotechnol. Bioeng. 69(2): 160–170

    Article  PubMed  CAS  Google Scholar 

  • Mertoglu B, Calli B, Girgin E, Inanc B & Ozturk I , (2005) Comparative analysis of nitrifying bacteria in fullscale oxidation ditch and aerated nitrification biofilter by using fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) J. Environ. Sci. Health Part A. 40: 937-948

    CAS  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA , (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria Appl. Environ. Microbiol. 62: 2156-2162

    PubMed  CAS  Google Scholar 

  • Nakano Y, Nishijima W, Soto E, Okado M, (1999) Relationship between growth rate of phenol utilizing bacteria and the toxic effects of metabolic intermediates of trichloroethylene (TCE) Wat. Res. 33(4): 1085–1089

    Article  CAS  Google Scholar 

  • Nicolaisen MH, Ramsing NB, (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria J. Microbiol. Methods. 50: 189-203

    Article  PubMed  CAS  Google Scholar 

  • Racsche ME, Hyman MR, Arp DJ, (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas Europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity Appl. Environ. Microbiol. 57(10): 2986–2994

    PubMed  Google Scholar 

  • Shuler ML & Kargi F (2001) Bioprocess Engineering Basic Concepts. Prentice Hall

  • Smith LH, Kitanidis PK, McCarty PL (1997) Numerical modeling and uncertainities in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture Biotechnol. Bioeng. 53(3): 320–331

    Article  CAS  Google Scholar 

  • Speitel GE, Segar RL, (1995) Cometabolism in biofilm reactors Wat. Sci. Tech. 31(1): 215–225

    Article  CAS  Google Scholar 

  • Sun AK, Hong J, Wood TK, (1997) Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively toluene ortho-monooxygenase Biotechnol. Bioeng. 55(4): 674–685

    Article  CAS  Google Scholar 

  • Yang L, Chang YF, Chou MS, (1999) Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia J. Hazard. Mater. B69: 111–126

    Article  Google Scholar 

Download references

Acknowledgement

The financial supports of this study by TUBITAK (Project No: IÇTAG A038) and Research Fund of Bogazici University (Project No: B.A.P. 02Y101D) are gratefully acknowledged. We thank Bulent Mertoglu and Nuray Guler for FISH and DGGE analyses of sludge samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Alpaslan Kocamemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpaslan Kocamemi, B., Çeçen, F. Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation 18, 71–81 (2007). https://doi.org/10.1007/s10532-005-9037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-005-9037-3

Keywords

Navigation