, Volume 23, Issue 6, pp 1453-1467
Date: 18 Mar 2014

Environmental determinants of geographic butterfly richness pattern in eastern China

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A long-standing task for ecologists and biogeographers is to reveal the underlying mechanisms accounting for the geographic pattern of species diversity. The number of hypotheses to explain geographic variation in species diversity has increased dramatically during the past half century. The oldest and the most popular one is environmental determination. However, seasonality, the intra-annual variability in climate variables has been rarely related to species richness. In this study, we assessed the relative importance of three environmental hypotheses: energy, seasonality and heterogeneity in explaining species richness pattern of butterflies in Eastern China. In addition, we also examined how environmental variables affect the relationship between species richness of butterflies and seed plants at geographic scale. All the environmental factors significantly affected butterfly richness, except sampling area and coefficient of variation of mean monthly precipitation. Energy and seasonality hypotheses explained comparable variation in butterfly richness (42.3 vs. 39.3 %), higher than that of heterogeneity hypothesis (25.9 %). Variation partitioning indicated that the independent effect of seasonality was much lower (0.0 %) than that of energy (5.5 %) and heterogeneity (6.3 %). However, seasonality performed better in explaining butterfly richness in topographically complex areas, reducing spatial autocorrelation in butterfly richness, and more strongly affect the association between butterflies and seed plants. The positive relationship between seed plant richness and butterfly richness was most likely the result of environmental variables (especially seasonality) influencing them in parallel. Insufficient sampling may partly explain the low explanatory power of environmental model (52.1 %) for geographic butterfly richness pattern. Our results have important implications for predicting the response of butterfly diversity to climate change.